Changhong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/716604/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Atomically Dispersed Ru-Decorated TiO ₂ Nanosheets for Thermally Assisted Solar-Driven Nitrogen Oxidation into Nitric Oxide. CCS Chemistry, 2022, 4, 1208-1216.	7.8	17
2	Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy, 2022, 92, 106674.	16.0	36
3	Critical Review on Lowâ€Temperature Liâ€lon/Metal Batteries. Advanced Materials, 2022, 34, e2107899.	21.0	204
4	Probing heat generation and release in a 57.5 A h high-energy-density Li-ion pouch cell with a nickel-rich cathode and SiO _{<i>x</i>} /graphite anode. Journal of Materials Chemistry A, 2022, 10, 1227-1235.	10.3	6
5	Spatial random fields-based Bayesian method for calibrating geotechnical parameters with ground surface settlements induced by shield tunneling. Acta Geotechnica, 2022, 17, 1503-1519.	5.7	8
6	Cu clusters/TiO _{2â^'<i>x</i>} with abundant oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia. Journal of Materials Chemistry A, 2022, 10, 6448-6453.	10.3	91
7	Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Science Advances, 2022, 8, eabm9477.	10.3	40
8	Stochastic mechanics-based Bayesian method calibrating the constitutive parameters of the unified model for clay and sand with CPTU data. Acta Geotechnica, 2022, 17, 4577-4598.	5.7	4
9	Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters, 2022, 7, 284-291.	17.4	105
10	Solvent-Free Approach for Interweaving Freestanding and Ultrathin Inorganic Solid Electrolyte Membranes. ACS Energy Letters, 2022, 7, 410-416.	17.4	91
11	Oxide-Derived Core–Shell Cu@Zn Nanowires for Urea Electrosynthesis from Carbon Dioxide and Nitrate in Water. ACS Nano, 2022, 16, 9095-9104.	14.6	86
12	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solid‣tate Liâ€O ₂ Batteries. Angewandte Chemie - Internatio Edition, 2021, 60, 5821-5826.	onæ\$.8	47
13	Electrosynthesis of Nitrate via the Oxidation of Nitrogen on Tensileâ€Strained Palladium Porous Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 4474-4478.	13.8	116
14	Electrosynthesis of Nitrate via the Oxidation of Nitrogen on Tensileâ€ S trained Palladium Porous Nanosheets. Angewandte Chemie, 2021, 133, 4524-4528.	2.0	28
15	Regulated lithium plating and stripping by a nano-scale gradient inorganic–organic coating for stable lithium metal anodes. Energy and Environmental Science, 2021, 14, 4085-4094.	30.8	48
16	Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers. ACS Applied Materials & Interfaces, 2021, 13, 4093-4101.	8.0	34
17	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy and Environmental Science, 2021, 14, 2577-2619.	30.8	201
18	Reviving Anode Protection Layer in Naâ€O ₂ Batteries: Failure Mechanism and Resolving Strategy. Advanced Energy Materials, 2021, 11, 2003789.	19.5	22

#	Article	IF	CITATIONS
19	Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Reports Physical Science, 2021, 2, 100337.	5.6	24
20	Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides. Energy Storage Materials, 2021, 37, 509-520.	18.0	55
21	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100210.	19.5	63
22	Realizing Solidâ€Phase Reaction in Li–S Batteries via Localized Highâ€Concentration Carbonate Electrolyte. Advanced Energy Materials, 2021, 11, 2101004.	19.5	46
23	Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nature Communications, 2021, 12, 3881.	12.8	77
24	Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Reports Physical Science, 2021, 2, 100462.	5.6	18
25	Unveiling micro internal short circuit mechanism in a 60ÂAh high-energy-density Li-ion pouch cell. Nano Energy, 2021, 84, 105908.	16.0	15
26	Selenium Vacancy Promotes Transfer Semihydrogenation of Alkynes from Water Electrolysis. ACS Catalysis, 2021, 11, 9471-9478.	11.2	29
27	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	19.5	64
28	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> â€Nitroethenes. Angewandte Chemie, 2021, 133, 22181-22187	, 2.0	13
29	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> â€Nitroethenes. Angewandte Chemie - International Edition, 2021, 60, 22010-22016.	13.8	34
30	A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Science Advances, 2021, 7, eabh1896.	10.3	93
31	Sulfur Vacancy-Promoted Highly Selective Electrosynthesis of Functionalized Aminoarenes via Transfer Hydrogenation of Nitroarenes with H ₂ O over a Co ₃ S _{4â^²} <i> _x </i> Nanosheet Cathode. CCS Chemistry, 2021, 3, 507-515.	7.8	56
32	Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. ACS Catalysis, 2021, 11, 14032-14037.	11.2	56
33	Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Materials, 2020, 27, 117-123.	18.0	109
34	Heterogeneous (de)chlorination-enabled control of reactivity in the liquid-phase synthesis of furanic biofuel from cellulosic feedstock. Green Chemistry, 2020, 22, 637-645.	9.0	32
35	Temperature-regulated reversible transformation of spinel-to-oxyhydroxide active species for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2020, 8, 1631-1635.	10.3	33
36	Unveiling the Promotion of Surfaceâ€Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 22656-22660.	2.0	32

#	Article	IF	CITATIONS
37	Selective Transfer Semihydrogenation of Alkynes with H ₂ 0 (D ₂ 0) as the H (D) Source over a Pdâ€P Cathode. Angewandte Chemie - International Edition, 2020, 59, 21170-21175.	13.8	91
38	Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries. Nano Energy, 2020, 77, 105097.	16.0	41
39	Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage Materials, 2020, 33, 139-146.	18.0	44
40	A nitrogen fixation strategy to synthesize NO <i>via</i> the thermally assisted photocatalytic conversion of air. Journal of Materials Chemistry A, 2020, 8, 19623-19630.	10.3	24
41	Selective Transfer Semihydrogenation of Alkynes with H 2 O (D 2 O) as the H (D) Source over a Pdâ€₽ Cathode. Angewandte Chemie, 2020, 132, 21356-21361.	2.0	15
42	Unveiling the Promotion of Surfaceâ€Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 22470-22474.	13.8	257
43	Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Science China Chemistry, 2020, 63, 1469-1476.	8.2	155
44	Thermally assisted photocatalytic conversion of CO ₂ –H ₂ O to C ₂ H ₄ over carbon doped In ₂ S ₃ nanosheets. Journal of Materials Chemistry A, 2020, 8, 10175-10179.	10.3	61
45	Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Materials, 2020, 30, 238-249.	18.0	46
46	Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries. Energy Storage Materials, 2020, 30, 98-103.	18.0	109
47	Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy, 2020, 76, 105015.	16.0	80
48	Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li–O2 batteries. Nano Energy, 2020, 75, 105036.	16.0	45
49	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	19.5	36
50	Totally compatible P4S10+n cathodes with self-generated Li+ pathways for sulfide-based all-solid-state batteries. Energy Storage Materials, 2020, 28, 325-333.	18.0	17
51	Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy, 2020, 72, 104686.	16.0	56
52	Site-Occupation-Tuned Superionic Li _{<i>x</i>} ScCl _{3+<i>x</i>} Halide Solid Electrolytes for All-Solid-State Batteries. Journal of the American Chemical Society, 2020, 142, 7012-7022.	13.7	260
53	3D Printing of Free-Standing "O ₂ Breathable―Air Electrodes for High-Capacity and Long-Life Na–O ₂ Batteries. Chemistry of Materials, 2020, 32, 3018-3027.	6.7	37
54	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	17.4	176

#	Article	IF	CITATIONS
55	A Versatile Snâ€Substituted Argyrodite Sulfide Electrolyte for Allâ€Solidâ€State Li Metal Batteries. Advanced Energy Materials, 2020, 10, 1903422.	19.5	183
56	Li ₁₀ Ge(P _{1–<i>x</i>} Sb <i>_x</i>) ₂ S ₁₂ Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chemistry of Materials, 2020, 32, 2664-2672.	6.7	125
57	Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solid tate Na Metal Batteries. Advanced Functional Materials, 2020, 30, 2001118.	14.9	53
58	Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy and Environmental Science, 2020, 13, 1429-1461.	30.8	366
59	Interface Engineering of Sulfide-Based All-Solid-State Lithium Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 308-308.	0.0	0
60	Stabilizing the Li Metal Interface: Molecular Layer Deposition for Advanced Next-Generation Energy Storage Systems. ECS Meeting Abstracts, 2020, MA2020-01, 281-281.	0.0	0
61	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie, 2019, 131, 16579-16584.	2.0	92
62	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 16427-16432.	13.8	232
63	Rücktitelbild: Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte (Angew. Chem.) Tj ETQq1 1 0	.784314 2.0	rgBT /Overlo
64	O ₂ /O ₂ [–] Crossover- and Dendrite-Free Hybrid Solid-State Na–O ₂ Batteries. Chemistry of Materials, 2019, 31, 9024-9031.	6.7	24
65	Air-stable Li ₃ InCl ₆ electrolyte with high voltage compatibility for all-solid-state batteries. Energy and Environmental Science, 2019, 12, 2665-2671.	30.8	345
66	Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode. Matter, 2019, 1, 1215-1231.	10.0	120
67	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	17.4	154
68	<i>In situ</i> formation of highly controllable and stable Na ₃ PS ₄ as a protective layer for Na metal anode. Journal of Materials Chemistry A, 2019, 7, 4119-4125.	10.3	51
69	Solidâ€5tate Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfideâ€Based Allâ€5olidâ€5tate Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900392.	14.9	154
70	Manipulating Interfacial Nanostructure to Achieve Highâ€Performance Allâ€Solidâ€State Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900261.	8.6	90
71	NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 6099-6103.	13.8	267
72	Highâ€Performance Li–SeS <i>_x</i> Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2019 31, e1808100.	' 21.0	121

#	Article	IF	CITATIONS
73	A Novel Organic "Polyurea―Thin Film for Ultralongâ€Life Lithiumâ€Metal Anodes via Molecularâ€Layer Deposition. Advanced Materials, 2019, 31, e1806541.	21.0	204
74	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	16.0	143
75	Review—From Nano Size Effect to In Situ Wrapping: Rational Design of Cathode Structure for High Performance Lithiumâ 'Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6034-A6042.	2.9	25
76	Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes. Nano Energy, 2018, 43, 368-375.	16.0	117
77	Multi-functional nanowall arrays with unrestricted Li ⁺ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 22958-22965.	10.3	31
78	Stabilization of all-solid-state Li–S batteries with a polymer–ceramic sandwich electrolyte by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 23712-23719.	10.3	77
79	In Situ Li ₃ PS ₄ Solidâ€State Electrolyte Protection Layers for Superior Longâ€Life and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	21.0	140
80	Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy, 2018, 54, 375-382.	16.0	123
81	Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. ACS Applied Materials & Interfaces, 2018, 10, 39794-39801.	8.0	126
82	A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nature Communications, 2018, 9, 4509.	12.8	175
83	Ultrahighâ€Capacity and Longâ€Life Lithium–Metal Batteries Enabled by Engineering Carbon Nanofiber–Stabilized Graphene Aerogel Film Host. Small, 2018, 14, e1803310.	10.0	48
84	On the Cycling Performance of Naâ€O ₂ Cells: Revealing the Impact of the Superoxide Crossover toward the Metallic Na Electrode. Advanced Functional Materials, 2018, 28, 1801904.	14.9	37
85	High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy and Environmental Science, 2018, 11, 2828-2832.	30.8	99
86	Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Materials, 2018, 15, 415-421.	18.0	40
87	Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy, 2018, 53, 168-174.	16.0	132
88	Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Science China Materials, 2017, 60, 1121-1128.	6.3	39
89	Computing: Memristive Devices with Highly Repeatable Analog States Boosted by Graphene Quantum Dots (Small 20/2017). Small, 2017, 13, .	10.0	0
90	Memristive Devices with Highly Repeatable Analog States Boosted by Graphene Quantum Dots. Small, 2017, 13, 1603435.	10.0	44

#	Article	IF	CITATIONS
91	Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications. Scientific Reports, 2016, 6, 22970.	3.3	66
92	In-situ activated polycation as a multifunctional additive for Li-S batteries. Nano Energy, 2016, 26, 43-49.	16.0	34
93	Monodispersed Sulfur Nanoparticles for Lithium–Sulfur Batteries with Theoretical Performance. Nano Letters, 2015, 15, 798-802.	9.1	273
94	Rational Design of Cathode Structure for High Rate Performance Lithium–Sulfur Batteries. Nano Letters, 2015, 15, 5443-5448.	9.1	147
95	Vulcanization accelerator enabled sulfurized carbon materials for high capacity and high stability of lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 1392-1395.	10.3	66
96	Sulfur–amine chemistry-based synthesis of multi-walled carbon nanotube–sulfur composites for high performance Li–S batteries. Chemical Communications, 2014, 50, 1202-1204.	4.1	103
97	Size Effect of Sulfur Nanoparticles in Lithium Sulfur Batteries. ECS Meeting Abstracts, 2014, , .	0.0	0
98	Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries. Scientific Reports, 2013, 3, 1910.	3.3	193
99	Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper. KSCE Journal of Civil Engineering, 0, , 1.	1.9	0