Joel V Weinstock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7166018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Heligmosomoides polygyrus bakeri</i> Infection Decreases Smad7 Expression in Intestinal CD4+ T Cells, Which Allows TGF-Ĩ² to Induce IL-10–Producing Regulatory T Cells That Block Colitis. Journal of Immunology, 2019, 202, 2473-2481.	0.4	18
2	Immunomodulatory effect of Syphacia obvelata in treatment of experimental DSS-induced colitis in mouse model. Scientific Reports, 2019, 9, 19127.	1.6	10
3	Analysis of the Trichuris suis excretory/secretory proteins as a function of life cycle stage and their immunomodulatory properties. Scientific Reports, 2018, 8, 15921.	1.6	37
4	A Case of Hepatic Portal Venous Gas: Hypothesis of a Transient Direct Communication between a Penetrating Antral Gastric Ulcer and Mesenteric Varices. Case Reports in Gastrointestinal Medicine, 2017, 2017, 1-4.	0.2	2
5	Downregulation of the Syk Signaling Pathway in Intestinal Dendritic Cells Is Sufficient To Induce Dendritic Cells That Inhibit Colitis. Journal of Immunology, 2016, 197, 2948-2957.	0.4	27
6	Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science, 2016, 351, 1329-1333.	6.0	707
7	Do We Need Worms to Promote Immune Health?. Clinical Reviews in Allergy and Immunology, 2015, 49, 227-231.	2.9	21
8	Somatostatin Negatively Regulates Parasite Burden and Granulomatous Responses in Cysticercosis. BioMed Research International, 2014, 2014, 1-6.	0.9	2
9	Helminth Infections Decrease Host Susceptibility to Immune-Mediated Diseases. Journal of Immunology, 2014, 193, 3239-3247.	0.4	70
10	Innate Immunity in Disease. Clinical Gastroenterology and Hepatology, 2014, 12, 749-755.	2.4	20
11	Translatability of helminth therapy in inflammatory bowel diseases. International Journal for Parasitology, 2013, 43, 245-251.	1.3	97
12	<i>Heligmosomoides polygyrus bakeri</i> Infection Activates Colonic Foxp3+ T Cells Enhancing Their Capacity To Prevent Colitis. Journal of Immunology, 2013, 191, 1927-1934.	0.4	64
13	<i>Heligmosomoides polygyrus bakeri</i> Induces Tolerogenic Dendritic Cells that Block Colitis and Prevent Antigen-Specific Gut T Cell Responses. Journal of Immunology, 2012, 189, 2512-2520.	0.4	76
14	The worm returns. Nature, 2012, 491, 183-185.	13.7	75
15	Heligmosomoides Polygyrus Abrogates Antigen-Specific Gut Injury in a Murine Model of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2012, 18, 1447-1455.	0.9	32
16	Helminth–host immunological interactions: prevention and control of immuneâ€mediated diseases. Annals of the New York Academy of Sciences, 2012, 1247, 83-96.	1.8	153
17	Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflammatory Bowel Diseases, 2010, 16, 1841-1849.	0.9	276
18	<i>Heligmosomoides polygyrus</i> Infection Can Inhibit Colitis through Direct Interaction with Innate Immunity. Journal of Immunology, 2010, 185, 3184-3189.	0.4	84

JOEL V WEINSTOCK

#	Article	IF	CITATIONS
19	Helminths and the IBD hygiene hypothesis. Inflammatory Bowel Diseases, 2009, 15, 128-133.	0.9	188
20	Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflammatory Bowel Diseases, 2009, 15, 491-500.	0.9	152
21	Role of T cell TGFâ€Î² signaling in intestinal cytokine responses and helminthic immune modulation. European Journal of Immunology, 2009, 39, 1870-1878.	1.6	74
22	Colonization with <i>Heligmosomoides polygyrus</i> Suppresses Mucosal IL-17 Production. Journal of Immunology, 2008, 181, 2414-2419.	0.4	109
23	<i>Heligmosomoides polygyrus</i> Promotes Regulatory T-Cell Cytokine Production in the Murine Normal Distal Intestine. Infection and Immunity, 2007, 75, 4655-4663.	1.0	111
24	Helminths and Mucosal Immune Modulation. Annals of the New York Academy of Sciences, 2006, 1072, 356-364.	1.8	44
25	Induction of CD8+ regulatory T cells in the intestine by Heligmosomoides polygyrus infection. American Journal of Physiology - Renal Physiology, 2006, 291, G253-G259.	1.6	87
26	Cutting Edge: Heligmosomoides polygyrus Induces TLR4 on Murine Mucosal T Cells That Produce TGFβ after Lipopolysaccharide Stimulation. Journal of Immunology, 2006, 176, 726-729.	0.4	65
27	Intestinal Helminths Protect in a Murine Model of Asthma. Journal of Immunology, 2006, 177, 1628-1635.	0.4	178
28	Role of helminths in regulating mucosal inflammation. Seminars in Immunopathology, 2005, 27, 249-271.	4.0	50
29	Is there a role for helminths in the therapy of inflammatory bowel disease?. Nature Reviews Gastroenterology & Hepatology, 2005, 2, 62-63.	1.7	34
30	Trichuris suis therapy for active ulcerative colitis: A randomized controlled trial. Gastroenterology, 2005, 128, 825-832.	0.6	690
31	CD4+ T cells from IL-10-deficient mice transfer susceptibility to NSAID-induced Rag colitis. American Journal of Physiology - Renal Physiology, 2004, 287, G320-G325.	1.6	19
32	Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. European Journal of Immunology, 2004, 34, 2690-2698.	1.6	260
33	Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. International Immunology, 2003, 15, 59-69.	1.8	219
34	Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. American Journal of Gastroenterology, 2003, 98, 2034-2041.	0.2	387
35	IL-18 and IL-12 Signal Through the NF-κB Pathway to Induce NK-1R Expression on T Cells. Journal of Immunology, 2003, 170, 5003-5007.	0.4	52
36	Substance P Regulates Th1-Type Colitis in IL-10 Knockout Mice. Journal of Immunology, 2003, 171, 3762-3767.	0.4	65

JOEL V WEINSTOCK

#	Article	IF	CITATIONS
37	Exposure to schistosome eggs protects mice from TNBS-induced colitis. American Journal of Physiology - Renal Physiology, 2003, 284, G385-G391.	1.6	218
38	Established TH1 Granulomatous Responses Induced by Active Mycobacterium avium Infection Switch to TH2 Following Challenge with Schistosoma mansoni. Clinical Immunology, 2002, 104, 274-281.	1.4	36
39	Rapid development of colitis in NSAID-treated IL-10–deficient mice. Gastroenterology, 2002, 123, 1527-1542.	0.6	252
40	The possible link between de-worming and the emergence of immunological disease. Translational Research, 2002, 139, 334-338.	2.4	70
41	Interleukin 12 and antigen independently induce substance P receptor expression in T cells in murine schistosomiasis mansoni. FASEB Journal, 2001, 15, 950-957.	0.2	9
42	Does the failure to acquire helminthic parasites predispose to Crohn's disease?. FASEB Journal, 2000, 14, 1848-1855.	0.2	222
43	ILâ€4 regulates VIP receptor subtype 2 mRNA (VPAC2) expression in T cells in murine schistosomiasis. FASEB Journal, 2000, 14, 948-954.	0.2	18
44	The Substance P and Somatostatin Interferon- ^{ĵ3} Immunoregulatory Circuita. Annals of the New York Academy of Sciences, 1998, 840, 532-539.	1.8	48
45	The Influence of Helminths on Immunological Diseases. , 0, , 201-210.		0
46	Helminthic Infections of the Gastrointestinal Tract and Liver. , 0, , 524-543.		0