Adrian Moreno Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165760/publications.pdf

Version: 2024-02-01

28 papers

625 citations

16 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

504 citing authors

#	Article	IF	CITATIONS
1	Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Materials Horizons, 2020, 7, 2237-2257.	6.4	129
2	Catalyst-Free Synthesis of Lignin Vitrimers with Tunable Mechanical Properties: Circular Polymers and Recoverable Adhesives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57952-57961.	4.0	51
3	Biocatalytic nanoparticles for the stabilization of degassed single electron transfer-living radical pickering emulsion polymerizations. Nature Communications, 2020, 11, 5599.	5.8	44
4	Access to tough and transparent nanocomposites <i>via</i> Pickering emulsion polymerization using biocatalytic hybrid lignin nanoparticles as functional surfactants. Green Chemistry, 2021, 23, 3001-3014.	4.6	40
5	Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid―and Base atalyzed Functionalization in Dispersion State. Angewandte Chemie - International Edition, 2021, 60, 20897-20905.	7.2	34
6	Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules, 2019, 20, 2135-2147.	2.6	33
7	Replacing Cu(II)Br ₂ with Me ₆ -TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP Reveals the Mixed-Ligand Effect. Biomacromolecules, 2020, 21, 250-261.	2.6	26
8	SET-LRP in the Neoteric Ethyl Lactate Alcohol. Biomacromolecules, 2017, 18, 3447-3456.	2.6	23
9	SET-LRP mediated by TREN in biphasic water–organic solvent mixtures provides the most economical and efficient process. Polymer Chemistry, 2017, 8, 7559-7574.	1.9	22
10	Photoinduced Upgrading of Lactic Acid-Based Solvents to Block Copolymer Surfactants. ACS Sustainable Chemistry and Engineering, 2020, 8, 1276-1284.	3.2	22
11	Fully Biobased Photothermal Films and Coatings for Indoor Ultraviolet Radiation and Heat Management. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12693-12702.	4.0	21
12	Primary interactions of biomass components during fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105297.	2.6	20
13	SET-LRP of Bio- and Petroleum-Sourced Methacrylates in Aqueous Alcoholic Mixtures. Biomacromolecules, 2019, 20, 1816-1827.	2.6	17
14	Macromonomers, telechelics and more complex architectures of PMA by a combination of biphasic SET-LRP and biphasic esterification. Polymer Chemistry, 2018, 9, 1885-1899.	1.9	16
15	Acrylate-macromonomers and telechelics of PBA by merging biphasic SET-LRP of BA, chain extension with MA and biphasic esterification. Polymer Chemistry, 2018, 9, 1961-1971.	1.9	16
16	SET-LRP in biphasic mixtures of fluorinated alcohols with water. Polymer Chemistry, 2018, 9, 2313-2327.	1.9	16
17	SET-LRP from Programmed Difunctional Initiators Encoded with Double Single-Cleavage and Double Dual-Cleavage Groups. Biomacromolecules, 2019, 20, 3200-3210.	2.6	15
18	Linear and branched acetal polymers from castor oil via acetal metathesis polymerization. European Polymer Journal, 2018, 108, 348-356.	2.6	14

#	Article	IF	CITATIONS
19	Orthogonally functionalizable polyacetals: a versatile platform for the design of acid sensitive amphiphilic copolymers. Polymer Chemistry, 2019, 10, 5215-5227.	1.9	12
20	SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules, 2018, 19, 4480-4491.	2.6	11
21	Programming Self-Assembly and Stimuli-Triggered Response of Hydrophilic Telechelic Polymers with Sequence-Encoded Hydrophobic Initiators. Macromolecules, 2020, 53, 7285-7297.	2.2	10
22	pH-Responsive Micellar Nanoassemblies from Water-Soluble Telechelic Homopolymers Endcoding Acid-Labile Middle-Chain Groups in Their Hydrophobic Sequence-Defined Initiator Residue. ACS Macro Letters, 2019, 8, 1200-1208.	2.3	8
23	Chemical modification and functionalization of lignin nanoparticles. , 2022, , 385-431.		8
24	Acetone: a solvent or a reagent depending on the addition order in SET-LRP. Polymer Chemistry, 2018, 9, 5411-5417.	1.9	7
25	Dual Biochemically Breakable Drug Carriers from Programmed Telechelic Homopolymers. Biomacromolecules, 2020, 21, 4313-4325.	2.6	5
26	Highly reactive \hat{l}_{\pm} -bromoacrylate monomers and Michael acceptors obtained by Cu(ii)Br2-dibromination of acrylates and instantaneous E2 by a ligand. Polymer Chemistry, 2018, 9, 2082-2086.	1.9	3
27	Tetramethyl guanidineâ€assisted synthesis and thermal crosslinking of multifunctional benzoxazine monomers based on natural phloretic acid. Journal of Polymer Science, 0, , .	2.0	2
28	Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid―and Base atalyzed Functionalization in Dispersion State. Angewandte Chemie, 2021, 133, 21065-21073.	1.6	0