
Ikuo Suemune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165659/publications.pdf Version: 2024-02-01

INTO SUEMUNE

#	Article	IF	CITATIONS
1	Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements. Applied Physics Letters, 1999, 74, 1254-1256.	3.3	244
2	Extremely wide modulation bandwidth in a low threshold current strained quantum well laser. Applied Physics Letters, 1988, 53, 1378-1380.	3.3	222
3	Comment on Polarization Dependent Momentum Matrix Elements in Quantum Well Lasers. Japanese Journal of Applied Physics, 1984, 23, L35-L36.	1.5	196
4	Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Applied Physics Letters, 2000, 76, 550-552.	3.3	188
5	Luminescent porous silicon synthesized by visible light irradiation. Applied Physics Letters, 1993, 62, 1429-1431.	3.3	127
6	Band-mixing effects and excitonic optical properties in GaAs quantum wire structures-comparison with the quantum wells. IEEE Journal of Quantum Electronics, 1988, 24, 1778-1790.	1.9	126
7	Role of nitrogen in the reduced temperature dependence of band-gap energy in GaNAs. Applied Physics Letters, 2000, 77, 3021-3023.	3.3	118
8	Nitrogen-Doped p-Type ZnO Layers Prepared with H2O Vapor-Assisted Metalorganic Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 2002, 41, L1281-L1284.	1.5	118
9	Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell's inequality without spectral and temporal filtering. Physical Review B, 2013, 88, .	3.2	116
10	Temperature dependence of band gap energies of GaAsN alloys. Applied Physics Letters, 2000, 76, 1285-1287.	3.3	107
11	Corrections to the expression for gain in GaAs. IEEE Journal of Quantum Electronics, 1990, 26, 213-216.	1.9	103
12	Self-Ordering of Nanofacets on Vicinal SiC Surfaces. Physical Review Letters, 2003, 91, 226107.	7.8	89
13	Quantum Mechanical Size Effect Modulation Light Sources A New Field Effect Semiconductor Laser or Light Emitting Device. Japanese Journal of Applied Physics, 1983, 22, L22-L24.	1.5	78
14	Theoretical study of differential gain in strained quantum well structures. IEEE Journal of Quantum Electronics, 1991, 27, 1149-1159.	1.9	71
15	Field effects on the refractive index and absorption coefficient in AlGaAs quantum well structures and their feasibility for electrooptic device applications. IEEE Journal of Quantum Electronics, 1987, 23, 2167-2180.	1.9	66
16	Controllable enhancement of excitonic spontaneous emission by quantum confined Stark effect in GaAs quantum wells embedded in quantum microcavities. Applied Physics Letters, 1991, 58, 2735-2737.	3.3	60
17	Analysis of temperature dependent optical gain of strained quantum well taking account of carriers in the SCH layer. IEEE Photonics Technology Letters, 1994, 6, 344-347.	2.5	55
18	Bandgap Energy of GaNAs Alloys Grown on (001) GaAs by Metalorganic Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1997, 36, L1572-L1575.	1.5	55

#	Article	IF	CITATIONS
19	Position controlled nanowires for infrared single photon emission. Applied Physics Letters, 2010, 97, .	3.3	55
20	Study of Luminescent Region in Anodized Porous Silicons by Photoluminescence Imaging and Their Microstructures. Japanese Journal of Applied Physics, 1992, 31, L490-L493.	1.5	53
21	Extremelyâ€lowâ€threshold and highâ€temperature operation in a photopumped ZnSe/ZnSSe blue laser. Applied Physics Letters, 1991, 59, 1401-1403.	3.3	51
22	Incidence angle effect of a hydrogen plasma beam for the cleaning of semiconductor surfaces. Applied Physics Letters, 1989, 55, 760-762.	3.3	48
23	Photoirradiation Effect on Photoluminescence from Anodized Porous Silicons and Luminescence Mechanism. Japanese Journal of Applied Physics, 1992, 31, L494-L497.	1.5	46
24	Nucleation and growth kinetics of AlN films on atomically smooth 6H–SiC (0001) surfaces. Applied Physics Letters, 2001, 78, 3612-3614.	3.3	46
25	Blueâ€light stimulated emission from a localized state formed by wellâ€barrier fluctuation in a Ilâ€VI semiconductor superlattice. Applied Physics Letters, 1992, 61, 1182-1184.	3.3	45
26	Epitaxial growth of zincâ€blende ZnSe/MgS superlattices on (001) GaAs. Applied Physics Letters, 1996, 68, 844-846.	3.3	44
27	Growth and luminescence properties of self-organized ZnSe quantum dots. Applied Physics Letters, 1999, 75, 235-237.	3.3	44
28	Luminescence properties of ZnO films grown on GaAs substrates by molecular-beam epitaxy excited by electron–cyclotron resonance oxygen plasma. Journal of Crystal Growth, 2000, 214-215, 280-283.	1.5	44
29	Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 2000, 221, 435-439.	1.5	42
30	Luminescence of a Cooper Pair. Physical Review Letters, 2009, 103, 187001.	7.8	41
31	Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy. Physical Review B, 2014, 90, .	3.2	41
32	Lasing in a ZnS0.12Se0.88/ZnSe multilayer structure with photopumping. Applied Physics Letters, 1989, 54, 981-983.	3.3	40
33	Effect of indium doping on the transient optical properties of GaN films. Applied Physics Letters, 1999, 75, 2879-2881.	3.3	40
34	Superconductor-Based Quantum-Dot Light-Emitting Diodes: Role of Cooper Pairs in Generating Entangled Photon Pairs. Japanese Journal of Applied Physics, 2006, 45, 9264-9271.	1.5	38
35	Field-induced modulations of refractive index and absorption coefficient in a GaAs/AlGaAs quantum well structure. Electronics Letters, 1986, 22, 888.	1.0	37
36	Temperature dependent carrier dynamics in telecommunication band InAs quantum dots and dashes grown on InP substrates. Journal of Applied Physics, 2013, 113, .	2.5	37

#	Article	IF	CITATIONS
37	New lowâ€ŧemperature process for growth of GaAs on Si with metalorganic molecular beam epitaxy assisted by a hydrogen plasma. Applied Physics Letters, 1988, 53, 2173-2175.	3.3	36
38	Characterization of Nitrogen-Doped ZnSe and ZnS0.06Se0.94Films Grown by Metal-Organic Vapor-Phase Epitaxy. Japanese Journal of Applied Physics, 1988, 27, L2195-L2198.	1.5	36
39	Mass Spectrometric Study and Modeling of Decomposition Process of Tris-Dimethylamino-Arsenic on (001) GaAs Surface. Japanese Journal of Applied Physics, 1991, 30, L1579-L1582.	1.5	36
40	Photoluminescence study of InAs quantum dots embedded in GaNAs strain compensating layer grown by metalorganic-molecular-beam epitaxy. Journal of Applied Physics, 2002, 92, 6813-6818.	2.5	36
41	Growth and structural characterization of IllÂNÂV semiconductor alloys. Semiconductor Science and Technology, 2002, 17, 755-761.	2.0	36
42	Deterministic Single-Photon and Polarization-Correlated Photon Pair Generations From a Single InAlAs Quantum Dot. Journal of Nanoelectronics and Optoelectronics, 2006, 1, 39-51.	0.5	35
43	In-SituRHEED Monitoring of Hydrogen Plasma Cleaning on Semiconductor Surfaces. Japanese Journal of Applied Physics, 1990, 29, 2273-2276.	1.5	33
44	Stability of CdSe and ZnSe dots self-organized on semiconductor surfaces. Applied Physics Letters, 1997, 71, 3886-3888.	3.3	33
45	Metalorganic molecular beam epitaxy of GaNAs alloys on (001)GaAs. Journal of Crystal Growth, 1998, 189-190, 490-495.	1.5	33
46	Surface-emitting stimulated emission in high-quality ZnO thin films. Journal of Applied Physics, 2004, 96, 3733-3736.	2.5	32
47	Enhanced Photon Generation in a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Nb</mml:mi><mml:mo>/</mml:mo><mml:mi>n</mml:mi><mml:mo>â^'</mml:mo> Light Emitting Device. Physical Review Letters, 2011, 107, 157403.</mml:math>	<mnn/:sni>lr</mn	າGa & s
48	Lowâ€ŧemperature GaAs epitaxial growth using electronâ€cyclotron resonance/metalorganicâ€molecularâ€beam epitaxy. Journal of Applied Physics, 1988, 64, 2778-2780.	2.5	31
49	High Output Power (>20 W) and High Quantum Efficiency in a Photopumped ZnSe/ZnSSe Blue Laser Operating at Room Temperature. Japanese Journal of Applied Physics, 1991, 30, L1399-L1401.	1.5	31
50	Superconductor-based Light Emitting Diode: Demonstration of Role of Cooper Pairs in Radiative Recombination Processes. Applied Physics Express, 2008, 1, 011701.	2.4	29
51	Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy. Applied Physics Letters, 2013, 103, .	3.3	29
52	Improvement of InAs quantum-dot optical properties by strain compensation with GaNAs capping layers. Applied Physics Letters, 2003, 83, 4524-4526.	3.3	28
53	Noncontact photoacoustic measurements of semiconductors with Michelson interferometry. Journal of Applied Physics, 1985, 58, 615-617.	2.5	27
54	Electroreflectance Spectra and Field-Induced Variation in Refractive Index of a GaAs/AlAs Quantum Well Structure at Room Temperature. Japanese Journal of Applied Physics, 1986, 25, L640-L642.	1.5	27

#	Article	IF	CITATIONS
55	Atomic layer epitaxy of GaAs and role of Asâ€source materials on selfâ€limiting mechanism. Applied Physics Letters, 1992, 60, 1498-1500.	3.3	27
56	Single-crystalline rocksalt CdO layers grown on GaAs (001) substrates by metalorganic molecular-beam epitaxy. Applied Physics Letters, 2001, 79, 470-472.	3.3	27
57	Microcavities with distributed Bragg reflectors based on ZnSe/MgS superlattice grown by MOVPE. Journal of Crystal Growth, 2000, 221, 699-703.	1.5	26
58	Transient Response of Photoluminescence for Electric Field in a GaAs/Al0.7Ga0.3As Single Quantum Well: Evidence for Field-Induced Increase in Carrier Life Time. Japanese Journal of Applied Physics, 1985, 24, L586-L588.	1.5	25
59	GaNAs as Strain Compensating Layer for 1.55 µm Light Emission from InAs Quantum Dots. Japanese Journal of Applied Physics, 2003, 42, 5598-5601.	1.5	24
60	Epitaxial ZnO growth and p-type doping with MOMBE. Physica Status Solidi (B): Basic Research, 2004, 241, 640-647.	1.5	24
61	Photon Antibunching Observed from an InAlAs Single Quantum Dot. Japanese Journal of Applied Physics, 2005, 44, L793-L796.	1.5	24
62	Near-Room-Temperature Photopumped Blue Lasers in ZnSxSe1-x/ZnSe Multilayer Structures. Japanese Journal of Applied Physics, 1990, 29, L2420-L2422.	1.5	23
63	X-ray photoelectron spectroscopy and atomic force microscopy surface study of GaAs(100) cleaning procedures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 77.	1.6	23
64	Self-Organized CdSe Quantum Dots on (100)ZnSe/GaAs Surfaces Grown by Metalorganic Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1997, 36, 4097-4101.	1.5	23
65	H2O-Vapor-Activated ZnO Growth on a-Face Sapphire Substrates by Metalorganic Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 2002, 41, 2851-2854.	1.5	23
66	Photon-spin qubit-conversion based on Overhauser shift of Zeeman energies in quantum dots. Applied Physics Letters, 2005, 87, 112506.	3.3	23
67	Gain-switching characteristics and fast transient response of three-terminal size-effect modulation laser. IEEE Journal of Quantum Electronics, 1986, 22, 1900-1908.	1.9	22
68	Selective formation of luminescent porous silicon by photosynthesis. Journal of Applied Physics, 1994, 75, 4765-4767.	2.5	22
69	Semiconductor photonic dots: Visible wavelength-sized optical resonators. Applied Physics Letters, 1999, 74, 1963-1965.	3.3	22
70	Strain effect on the N composition dependence of GaNAs bandgap energy grown on (001) GaAs by metalorganic molecular beam epitaxy. Journal of Crystal Growth, 1999, 201-202, 355-358.	1.5	22
71	Theory of strain states in InAs quantum dots and dependence on their capping layers. Journal of Applied Physics, 2005, 98, 063502.	2.5	22
72	A Cooper-Pair Light-Emitting Diode: Temperature Dependence of Both Quantum Efficiency and Radiative Recombination Lifetime. Applied Physics Express, 2010, 3, 054001.	2.4	21

#	Article	IF	CITATIONS
73	Optical and structural characterizations of ZnSe/ZnSSe superlattices grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 1992, 72, 3029-3033.	2.5	20
74	Highly conductive GaAsNSe alloys grown on GaAs and their nonalloyed ohmic properties. Applied Physics Letters, 2001, 79, 3284-3286.	3.3	20
75	Bright single-photon source based on an InAs quantum dot in a silver-embedded nanocone structure. Applied Physics Letters, 2013, 102, 131114.	3.3	20
76	Switching of photoluminescence by pulsed electric field in GaAs/Al <inf>0.7</inf> Ga <inf>0.3</inf> As single quantum well structure. IEEE Journal of Quantum Electronics, 1986, 22, 1837-1844.	1.9	19
77	Lattice-Mismatch Enhanced Diffusion at a ZnSe/GaAs Interface - Increase of Thermal Stability in a Lattice-Matching System. Japanese Journal of Applied Physics, 1987, 26, L2072-L2075.	1.5	19
78	Optical properties of highly excited ZnSe/ZnSxSe1-xmultiple-quantum-well structures. Semiconductor Science and Technology, 1992, 7, 681-685.	2.0	19
79	Anomalous dip observed in intensity autocorrelation function as an inherent nature of single-photon emitters. Applied Physics Letters, 2012, 101, .	3.3	19
80	Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber. Applied Physics Express, 2016, 9, 032801.	2.4	19
81	Excitonic properties of zinc-blende ZnSe/MgS superlattices studied by reflection spectroscopy. Physical Review B, 1997, 55, 4449-4455.	3.2	18
82	GaN Quantum Structures with Fractional Dimension — From Quantum Well to Quantum Dot. Physica Status Solidi (B): Basic Research, 1999, 216, 431-434.	1.5	18
83	Control of ZnSe Film Stoichiometry at ZnSe/GaAs Interface Grown by MOCVD. Japanese Journal of Applied Physics, 1986, 25, L827-L829.	1.5	17
84	Observation of optical bistability by chargeâ€induced selfâ€feedback in biased AlGaAs multiple quantum well structures. Applied Physics Letters, 1990, 57, 419-421.	3.3	17
85	Atomic layer epitaxy of AlAs using trimethylamineâ€alane and aminoâ€As. Applied Physics Letters, 1993, 62, 1420-1422.	3.3	17
86	Excitonic luminescence up to room temperature in a ZnSe/MgS superlattice. Applied Physics Letters, 1997, 70, 2350-2352.	3.3	17
87	Electron effective mass and mobility in heavily doped n-GaAsN probed by Raman scattering. Journal of Applied Physics, 2008, 103, 103528.	2.5	17
88	Band-edge hole mass in strained-quantum-well structures. Physical Review B, 1991, 43, 14099-14106.	3.2	16
89	Excitonic properties of ZnSe/ZnSeS superlattices. Applied Physics Letters, 1994, 64, 2439-2441.	3.3	16
90	Atomic force microscope lithography on carbonaceous films deposited by electron-beam irradiation. Applied Physics Letters, 1998, 72, 716-718.	3.3	16

#	Article	IF	CITATIONS
91	Study of currentâ€voltage characteristic in a ZnSeâ€based IIâ€VI laser diode. Applied Physics Letters, 1993, 63, 2612-2614.	3.3	15
92	Large estimated frequency response increase from deep potential well strained quantum well lasers. IEEE Photonics Technology Letters, 1994, 6, 1315-1317.	2.5	15
93	Low-Dimensional II-VI Semiconductor Structures: ZnSe/MgS Superlattices and CdSe Self-Organized Dots. Physica Status Solidi (B): Basic Research, 1997, 202, 845-856.	1.5	15
94	CdO epitaxial layers grown on (001) GaAs surfaces by metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 2002, 237-239, 518-522.	1.5	15
95	Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source. Nanotechnology, 2013, 24, 455205.	2.6	15
96	Enhanced Photon Extraction from a Quantum Dot Induced by a Silver Microcolumnar Photon Reflector. Applied Physics Express, 2013, 6, 062801.	2.4	15
97	Fiber-Based Bidirectional Solid-State Single-Photon Emitter Based on Semiconductor Quantum Dot. Applied Physics Express, 2013, 6, 065203.	2.4	15
98	Quantumâ€confined fieldâ€effect light emitters with highâ€speed switching capability. Applied Physics Letters, 1989, 55, 1149-1151.	3.3	14
99	Roomâ€ŧemperature operation of threeâ€ŧerminal quantum onfined fieldâ€effect light emitters. Applied Physics Letters, 1990, 56, 2059-2061.	3.3	14
100	Continuous-Wave Operation of a Lateral Current Injection Ridge Waveguide AlGaAs/GaAs Laser with a Selectively-Doped Heterostructure. Japanese Journal of Applied Physics, 1991, 30, 990-991.	1.5	14
101	Catalytic Precracking of Amino-As in Metalorganic Molecular-Beam Epitaxy of GaAs. Japanese Journal of Applied Physics, 1992, 31, L1272-L1275.	1.5	14
102	Room temperature ultraviolet lasing action in high-quality ZnO thin films. Journal of Luminescence, 2007, 122-123, 828-830.	3.1	14
103	Observation of Acoustic Signals from Semiconductor Lasers. Japanese Journal of Applied Physics, 1981, 20, L9-L12.	1.5	13
104	Quenching of photoluminescence from GaAs/AlGaAs single quantum well by an electric field at high temperature. Superlattices and Microstructures, 1985, 1, 111-113.	3.1	13
105	Electric Field Effect on Subband State Transitions Peaks in the Photoluminescence from a GaAlAs Quantum Well Structure. Japanese Journal of Applied Physics, 1985, 24, L589-L592.	1.5	13
106	Photoacoustic study of surface and bulk nonradiative recombinations in GaAs with twoâ€wavelength excitations. Journal of Applied Physics, 1986, 60, 2621-2623.	2.5	13
107	Thermal stability of nearly lattice-matched ZnSSe/GaAs interface grown by MOVPE. Journal of Crystal Growth, 1988, 93, 662-666.	1.5	13
108	Auger effects in acceptorâ€doped longâ€wavelength strained quantum well lasers. Applied Physics Letters, 1989, 55, 2579-2581.	3.3	13

#	Article	IF	CITATIONS
109	Low-Temperature Selective Growth of ZnSe and ZnS on (001) GaAs Patterned with Carbonaceous Mask by Metalorganic Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 1998, 37, L272-L274.	1.5	13
110	Formation of wire-like surfaces and lateral composition modulation in GaAsN grown by metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 2000, 221, 546-550.	1.5	13
111	Structural anisotropy in GaN films grown on vicinal 4H-SiC surfaces by metallorganic molecular-beam epitaxy. Applied Physics Letters, 2003, 83, 1569-1571.	3.3	13
112	Luminescence study on evolution from Te isoelectronic centers to type-II ZnTe quantum dots grown by metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 2007, 301-302, 277-280.	1.5	13
113	Analysis of Intrinsic Saturable Absorption in InGaAs/InP Diode Lasers. Japanese Journal of Applied Physics, 1981, 20, L635-L638.	1.5	12
114	Hole-Burnings Observed at High Energy Tails in Spontaneous Emission Spectra from 1.3 µm-InGaAsP/InP Lasers. Japanese Journal of Applied Physics, 1982, 21, L240-L242.	1.5	12
115	Two-Dimensionally Collimated Output Beam from GaAlAs Diode Lasers with Two-Dimensional Distributed Bragg Reflectors. Japanese Journal of Applied Physics, 1983, 22, L267-L269.	1.5	12
116	Size effect modulation light sources — Possibility of LED mode operation at room temperature. Superlattices and Microstructures, 1985, 1, 335-337.	3.1	12
117	Dynamic Switching Characteristics of Photoluminescence by an Electric Field in AlGaAs Quantum Well Structures. Japanese Journal of Applied Physics, 1987, 26, L1313-L1316.	1.5	12
118	Photopumped lasing in ZnSSe/ZnSe multilayer structures up to 210 K. Journal of Crystal Growth, 1990, 101, 754-757.	1.5	12
119	Desorption properties of amine species during atomic layer epitaxy of GaAs using aminoâ€As. Applied Physics Letters, 1992, 61, 2577-2579.	3.3	12
120	Photopumped ZnSe/ZnSSe blue semiconductor lasers and a theoretical calculation of the optical gain. Journal of Crystal Growth, 1992, 117, 1068-1072.	1.5	12
121	Atomic Force Microscope Nanolithography on SiO2/Semiconductor Surfaces. Japanese Journal of Applied Physics, 1997, 36, 4057-4060.	1.5	12
122	Atomic force microscope based patterning of carbonaceous masks for selective area growth on semiconductor surfaces. Journal of Applied Physics, 2000, 88, 3158-3165.	2.5	12
123	1.55 μm emission from GalnNAs with indium-induced increase of N concentration. Applied Physics Letters, 2003, 83, 1992-1994.	3.3	12
124	Nucleation Stages of Carbon Nanotubes on SiC(0001) by Surface Decomposition. Japanese Journal of Applied Physics, 2005, 44, L803-L805.	1.5	12
125	Spectral hole burnings at high energy tails in spontaneous emission and hot carrier relaxation in InGaAsP lasers. IEEE Journal of Quantum Electronics, 1983, 19, 924-929.	1.9	11
126	A 140 ps Optical Pulse Generation by Field-Induced Gain Switching in a Photo-Excited Quantum Well Laser. Japanese Journal of Applied Physics, 1987, 26, L117-L119.	1.5	11

#	Article	IF	CITATIONS
127	Polarization dependent absorption spectra in quantum wire structures. Superlattices and Microstructures, 1988, 4, 19-22.	3.1	11
128	Low-temperature cleaning of Si and growth of GaAs on Si by hydrogen plasma-assisted metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 1989, 95, 91-95.	1.5	11
129	Dependence of GaAs etch rate on the angle of incidence of a hydrogen plasma beam excited by electron cyclotron resonance. Applied Physics Letters, 1990, 56, 2393-2395.	3.3	11
130	Selectively doped doubleâ€heterojunction lateral current injection ridge waveguide AlGaAs/GaAs laser. Applied Physics Letters, 1990, 56, 1391-1393.	3.3	11
131	Roomâ€ŧemperature stimulated emission in optically pumped narrow ZnSe/ZnSxSe1â~'xmultipleâ€quantumâ€well structures. Journal of Applied Physics, 1992, 72, 4969-4971.	2.5	11
132	Excitonic properties in ZnSe/ZnSxSe1â^'xstrained-layer superlattices by one- and two-photon spectroscopy. Physical Review B, 1994, 49, 14367-14371.	3.2	11
133	X-ray photoelectron spectroscopic and atomic force microscopic study of GaAs etching with a HCl solution. Applied Surface Science, 1994, 82-83, 250-256.	6.1	11
134	Exciton coherence in clean single InP/InAsP/InP nanowire quantum dots emitting in infra-red measured by Fourier spectroscopy. Journal of Physics: Conference Series, 2009, 193, 012132.	0.4	11
135	Analysis of transverse modes of phase-locked multi-stripe lasers. Electronics Letters, 1985, 21, 713.	1.0	10
136	Stability and interdiffusion at MOCVD grown ZnSe/GaAs interfaces. Journal of Crystal Growth, 1988, 86, 467-470.	1.5	10
137	Doping in a superlattice structure: Improved hole activation in wideâ€gap IIâ€VI materials. Journal of Applied Physics, 1990, 67, 2364-2369.	2.5	10
138	A new optoelectronic device based on modulation-doped heterostructure: demonstration of functions as both lateral current injection laser and junction field effect transistor. IEEE Photonics Technology Letters, 1990, 2, 881-883.	2.5	10
139	lodine Doping in ZnSe in High-Temperature Range by Metalorganic Vapor-Phase Epitaxy. Japanese Journal of Applied Physics, 1993, 32, L524-L527.	1.5	10
140	MOVPE growth of ZnSe/ZnS distributed Bragg reflectors on GaAs (1 0 0) and (3 1 1)B substrates. Journal of Crystal Growth, 1998, 184-185, 777-782.	1.5	10
141	Nucleation and Faceting in Selectively Grown ZnS Pyramidal Dot Array for Short-Wavelength Light Emitters. Japanese Journal of Applied Physics, 1999, 38, L710-L713.	1.5	10
142	Formation of ohmic contacts top-type ZnO. Physica Status Solidi (B): Basic Research, 2004, 241, 635-639.	1.5	10
143	Transport characteristics of a superconductor-based LED. Superconductor Science and Technology, 2010, 23, 034025.	3.5	10
144	Strongly suppressed multiâ€photon generation from a single quantum dot in a metalâ€embedded structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 337-339.	0.8	10

#	Article	IF	CITATIONS
145	Room-temperature operation of a transverse-distributed-feedback cavity laser. Electronics Letters, 1982, 18, 745.	1.0	9
146	High-Speed Intensity Modulation by Quantum-Confined Field Effect Combined with Modulation of Injection Current in Light-Emitting Triodes. Japanese Journal of Applied Physics, 1990, 29, L967-L970.	1.5	9
147	Theoretical Estimation of Leakage Current in II-VI Heterostructure Lasers. Japanese Journal of Applied Physics, 1992, 31, L95-L98.	1.5	9
148	Pressure-induced conduction-band crossover in a ZnSe/ZnS0.18Se0.82symmetric superlattice. Physical Review B, 1994, 50, 14635-14638.	3.2	9
149	MOVPE growth of ZnSe/ZnMgS distributed Bragg reflectors with high refractive-index contrast. Journal of Crystal Growth, 2000, 214-215, 1019-1023.	1.5	9
150	ll–VI quantum dots grown by MOVPE. Journal of Crystal Growth, 2003, 248, 301-309.	1.5	9
151	Intrinsic exciton transitions in high-quality ZnO thin films grown by plasma-enhanced molecular-beam epitaxy on sapphire substrates. Journal of Applied Physics, 2006, 99, 063709.	2.5	9
152	Triggered single-photon emission and cross-correlation properties in InAlAs quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 144-147.	2.7	9
153	Superconducting Light-Emitting Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-11.	2.9	9
154	Systematic alterations of excitonic spontaneous emission through continuous uning of emission wavelength in AlGaAs quantum microcavities. Surface Science, 1992, 267, 612-615.	1.9	8
155	High-Resolution Patterning of Luminescent Porous Silicon with Photoirradiation. Japanese Journal of Applied Physics, 1994, 33, 590-593.	1.5	8
156	Role of a metalorganic As source in atomic layer epitaxy of GaAs and AlAs. Applied Surface Science, 1994, 82-83, 149-157.	6.1	8
157	Temperature Dependence of ZnS Growth with Atmospheric-Pressure Metalorganic Vapor Phase Epitaxy Using Ditertiarybutyl Sulfide. Japanese Journal of Applied Physics, 1995, 34, 4143-4147.	1.5	8
158	Luminescence of Excitons Localized by Monolayer Interface Fluctuations in ZnSe/MgS Superlattices Grown by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1997, 36, 4199-4203.	1.5	8
159	Some effects of conduction band nonparabolicity on electron reflection spectrum of multiquantum barriers. Journal of Applied Physics, 1998, 84, 4667-4672.	2.5	8
160	Growth mechanism of selectively grown II–VI semiconductor photonic dots for short-wavelength light emitters. Journal of Crystal Growth, 2000, 221, 425-430.	1.5	8
161	Study of Resonance Wavelengths in II-VI Semiconductor Photonic Dots: Pyramidal Size Dependences and Luminescence Properties. Physica Status Solidi (B): Basic Research, 2002, 229, 971-976.	1.5	8
162	The application of an InGaAsâ^•GaAsN strain-compensated superlattice to InAs quantum dots. Journal of Applied Physics, 2006, 99, 103103.	2.5	8

#	Article	IF	CITATIONS
163	Inter-dot coupling and excitation transfer mechanisms of telecommunication band InAs quantum dots at elevated temperatures. New Journal of Physics, 2012, 14, 023037.	2.9	8
164	Carrier-transfer dynamics between neutral and charged excitonic states in a single quantum dot probed with second-order photon correlation measurements. Physical Review B, 2013, 88, .	3.2	8
165	Investigation of 1.3- µm InGaAsP/InP Lasers by the Measurement of Current-Injection-Induced Acoustic (CIA) Signals. Japanese Journal of Applied Physics, 1981, 20, L631-L634.	1.5	7
166	Semiconductor light sources with capabilities of electronic beam-scanning. Electronics Letters, 1983, 19, 1002.	1.0	7
167	Optical Nonlinearity Caused by Charge-Induced Field Screening in DC-Biased Quantum Well Structures. Japanese Journal of Applied Physics, 1989, 28, L1585-L1588.	1.5	7
168	300 ps switching of spontaneous emission by quantum confined field effect in a light emitting triode. IEEE Photonics Technology Letters, 1990, 2, 546-548.	2.5	7
169	Quantum-confined field-effect light emitters: device physics and experiments. IEEE Journal of Quantum Electronics, 1990, 26, 1481-1491.	1.9	7
170	Doping of nitrogen in ZnSe films: improved doping properties in ZnSe/ZnSSe periodic layered structures grown on GaAs by MOVPE. Journal of Crystal Growth, 1991, 107, 679-682.	1.5	7
171	Lasing Properties and Lasing Mechanism in a ZnSe/ZnSSe Multiple Quantum Well Heterostructure. Japanese Journal of Applied Physics, 1992, 31, L692-L695.	1.5	7
172	P-Type Doping Limits in ZnMgSSe and ZnSSe Compound Semiconductors. Japanese Journal of Applied Physics, 1997, 36, L37-L40.	1.5	7
173	Selective Growth Conditions of ZnSe/ZnS Heterostructures on (001) GaAs with Metalorganic Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1997, 36, 5044-5049.	1.5	7
174	Growth of zincblende superlattices and their heterointerface properties. Journal of Crystal Growth, 1997, 170, 480-484.	1.5	7
175	Study of site change of Li impurities in ZnSe by co-doping with iodine. Journal of Crystal Growth, 2000, 214-215, 562-566.	1.5	7
176	Investigations of optical and electrical properties of In-doped GaN films grown by gas-source molecular beam epitaxy. Journal of Crystal Growth, 2000, 209, 396-400.	1.5	7
177	Metalorganic molecular-beam epitaxy and characterization of GaAsNSe/GaAs superlattices emitting around 1.5-î¼m-wavelength region. Applied Physics Letters, 2003, 82, 898-900.	3.3	7
178	Formation of CdO dots on atomically flat ZnO surfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 933-937.	0.8	7
179	Superconducting transport in an LED with Nb electrodes. Physica C: Superconductivity and Its Applications, 2010, 470, 814-817.	1.2	7
180	Quantum-Dot-Based Photon Emission and Media Conversion for Quantum Information Applications. Advances in Mathematical Physics, 2010, 2010, 1-13.	0.8	7

#	Article	IF	CITATIONS
181	Longitudinal and transverse exciton-spin relaxation in a single InAsP quantum dot embedded inside a standing InP nanowire using photoluminescence spectroscopy. Physical Review B, 2012, 85, .	3.2	7
182	Enhanced light absorption in thin-film solar cells with light propagation direction conversion. Optics Express, 2013, 21, A539.	3.4	7
183	Optical observation of superconducting density of states in luminescence spectra of InAs quantum dots. Physical Review B, 2015, 92, .	3.2	7
184	Characterization of Loss Mechanism in 1.3 µm InGaAsP/InP Laser Diodes by Acoustical and Optical Measurements. Japanese Journal of Applied Physics, 1982, 21, 365.	1.5	6
185	Phaseâ€locked, indexâ€guided multipleâ€stripe lasers with large refractive index differences. Applied Physics Letters, 1984, 45, 1011-1013.	3.3	6
186	Electronic beam deflection in a semiconductor laser diode using grating output coupler. Electronics Letters, 1986, 22, 1310.	1.0	6
187	Oneâ€monolayerâ€ŧerraced structure in ZnSe/ZnSSe superlattices as revealed by Brewsterâ€angle reflection spectroscopy. Applied Physics Letters, 1994, 65, 2830-2832.	3.3	6
188	ZnSe/ZnS Distributed Bragg Reflectors in the Blue Region Grown on (311)B GaAs Substrates. Japanese Journal of Applied Physics, 1997, 36, 6672-6676.	1.5	6
189	p-type conductivity control of ZnSe with insertion of ZnTe:Li submonolayers in metalorganic molecular-beam epitaxy. Journal of Applied Physics, 1998, 84, 6100-6104.	2.5	6
190	Growth Activation of ZnO Layers with H2O Vapor ona-Face of Sapphire Substrate by Metalorganic Molecular-Beam Epitaxy. Physica Status Solidi A, 2002, 192, 224-229.	1.7	6
191	Modified spontaneous emission properties of CdS quantum dots embedded in novel three-dimensional microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 441-445.	2.7	6
192	Observation of reflection high-energy electron diffraction oscillation during metalorganic-molecular-beam epitaxy of AlAs and control of carbon incorporation. Journal of Applied Physics, 2003, 94, 4871.	2.5	6
193	Single-photon generation from InAlAs single quantum dot. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3833-3837.	0.8	6
194	Structural and Luminescence Properties of InAs Quantum Dots: Effect of Nitrogen Exposure on Dot Surfaces. Japanese Journal of Applied Physics, 2005, 44, L1512-L1515.	1.5	6
195	Luminescence observed from a junction fieldâ€effect transistor with Nb/nâ€InGaAs/Nb junction. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2816-2818.	0.8	6
196	Exciton dynamics and recombination in ZnSe/ZnSe0.82S0.18superlattices. Semiconductor Science and Technology, 1994, 9, 762-764.	2.0	5
197	Discrimination of Compound Semiconductor Heterointerfaces by Simultaneous Observations of Atomic Force Microscopy and Lateral Force Microscopy. Japanese Journal of Applied Physics, 1994, 33, 3748-3751.	1.5	5
198	Initial Growth Processes of ZnSe on Cleaned GaAs(001) Surfaces by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1996, 35, L1006-L1008.	1.5	5

#	Article	IF	CITATIONS
199	Role of Indium on Nitrogen Incorporation in GaNAs Grown by Metalorganic Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L1309-L1311.	1.5	5
200	Observation of clear negative differential resistance characteristics in GaAsNSe/GaAs and GaAsNSb/GaAs multiple quantum wells at room temperature. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 727-731.	2.7	5
201	Role of Cooper pairs for the generation of entangled photon pairs from single quantum dots. Microelectronics Journal, 2008, 39, 344-347.	2.0	5
202	Characterization of two-photon polarization mixed states generated from entangled-classical hybrid photon source. Optics Express, 2011, 19, 14249.	3.4	5
203	Transport Properties of Andreev Polarons in a Superconductor-Semiconductor-Superconductor Junction with Superlattice Structure. Physical Review Letters, 2011, 106, 157002.	7.8	5
204	Conversion of Light Propagation Direction for Highly Efficient Solar Cells. Applied Physics Express, 2011, 4, 102301.	2.4	5
205	Carrier dynamics and photoluminescence quenching mechanism of strained InGaSb/AlGaSb quantum wells. Journal of Applied Physics, 2013, 113, 053505.	2.5	5
206	High-Q resonance modes observed in a metallic nanocavity. Applied Physics Letters, 2013, 103, .	3.3	5
207	Optical control of spectral diffusion with single InAs quantum dots in a silver-embedded nanocone. Optics Express, 2017, 25, 8073.	3.4	5
208	Decomposition Mechanism of Triethyl-Arsenic on a GaAs Surface for Metalorganic Molecular-Beam Epitaxy: Role of Hydrogen Radicals. Japanese Journal of Applied Physics, 1991, 30, 2047-2052.	1.5	4
209	Low-Temperature Selective Epitaxial Growth of GaAs Using Triethylgallium and Amino-As in Metalorganic Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1994, 33, 3500-3504.	1.5	4
210	Study of mechanism to control electrical properties of AlAs grown using amineâ€alane with metalorganic molecularâ€beam epitaxy. Applied Physics Letters, 1994, 64, 1549-1551.	3.3	4
211	Observation of biexcition in quantum wells through transient four-wave mixing. Solid State Communications, 1996, 98, 951-955.	1.9	4
212	Lasing in ZnSe/ZnS0.18Se0.82superlattices. Physical Review B, 1996, 54, 17812-17818.	3.2	4
213	Purge Effect on Heterointerfaces of ZnSe/MgS Superlattices Grown by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1996, 35, L1658-L1661.	1.5	4
214	Atomic force microscopy study of heteroepitaxy processes by metalorganic vapour phase epitaxy. Applied Surface Science, 1997, 113-114, 371-376.	6.1	4
215	Longitudinal-optical-phonon-assisted energy relaxation in self-assembled CdS quantum dots embedded in ZnSe. Journal of Applied Physics, 2002, 92, 3573-3578.	2.5	4
216	Structural properties of CdO layers grown on GaAs (001) substrates by metalorganic molecular beam epitaxy. Journal of Crystal Growth, 2003, 252, 219-225.	1.5	4

#	Article	IF	CITATIONS
217	Emissions from single localized states observed in ZnCdS ternary alloy mesa structures. Applied Physics Letters, 2003, 82, 4277-4279.	3.3	4
218	Room-temperature stimulated emission from ZnO thin films grown by radio-frequency magnetron sputtering. Journal of Luminescence, 2007, 122-123, 825-827.	3.1	4
219	Excitonic spin-state preservation mediated by optical-phonon resonant excitation in a single quantum dot. Physical Review B, 2008, 78, .	3.2	4
220	Differential resistance oscillations with microwave irradiation in a superconductor-semiconductor junction. Journal of Physics: Conference Series, 2008, 109, 012033.	0.4	4
221	Photon-pair generation based on superconductivity. IEICE Electronics Express, 2012, 9, 1184-1200.	0.8	4
222	Growth and Optimization of 2-μm InGaSb/AlGaSb Quantum-Well-Based VECSELs on GaAs/AlGaAs DBRs. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1700611-1700611.	2.9	4
223	Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure. Journal of Applied Physics, 2014, 116, .	2.5	4
224	Oscillation of Two-Dimensional Modes in Transverse-Distributed-Feedback Cavity Lasers. Japanese Journal of Applied Physics, 1980, 19, L739-L742.	1.5	3
225	Mode characteristics of the multiple-stripe laser effects of the loss embedded in the outer unpumped region. Journal of Lightwave Technology, 1986, 4, 730-738.	4.6	3
226	Increase in Nonradiative Recombination Lifetimes in Semi-Insulating GaAs Observed by a Photoacoustic Technique. Japanese Journal of Applied Physics, 1987, 26, L159-L162.	1.5	3
227	Monolithic integration of a new optoelectronic device based on a modulationâ€doped heterostructure. Applied Physics Letters, 1991, 59, 621-623.	3.3	3
228	Radiative recombination processes in ZnSe/ZnSexSe1â^'x multiple-quantum-well structures. Physica B: Condensed Matter, 1993, 185, 352-356.	2.7	3
229	Excitonic processes and lasing in ZnSSe/ZnSe superlattices. Superlattices and Microstructures, 1994, 16, 371-377.	3.1	3
230	Polarization dependence of two-photon absorption in ZnSe-ZnSSe strained-layer superlattices. Solid State Communications, 1994, 92, 695-698.	1.9	3
231	Metalorganic molecular beam epitaxy growth of ZnSe with new Zn and Se precursors without precracking. Journal of Crystal Growth, 1995, 150, 734-737.	1.5	3
232	Coherent formation of biexcitons in ZnSe/ZnSSe quantum wells by four-wave mixing. Journal of Luminescence, 1995, 66-67, 429-432.	3.1	3
233	Time-resolved study of stimulated emission in superlattices. Journal of Crystal Growth, 1996, 159, 657-660.	1.5	3
234	Band gap energy of GaNAs grown on GaAs(001) substrates by metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 1998, 188, 103-106.	1.5	3

#	Article	IF	CITATIONS
235	New type of ZnCdS/ZnMgCdS heterostructures lattice-matched to GaAs for selective-area growth. Journal of Crystal Growth, 2000, 214-215, 125-129.	1.5	3
236	Periodic doping of GaAs:Zn p-type nano-clusters in ZnSe grown by metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 2000, 214-215, 524-528.	1.5	3
237	Fabrication of selectively grown II–VI widegap semiconductor photonic dots on (001)GaAs with MOMBE. Journal of Crystal Growth, 2000, 209, 518-521.	1.5	3
238	Structural properties of GaAsN grown on (001) GaAs by metalorganic molecular beam epitaxy. Journal of Electronic Materials, 2001, 30, 900-906.	2.2	3
239	RADIATIVE EFFICIENCY OF LOCALIZED EXCITONS IN ZnCdS TERNARY ALLOYS. International Journal of Modern Physics B, 2001, 15, 3718-3721.	2.0	3
240	Longitudinal-Optical-Phonon-Assisted Resonant Excitations of CdS Quantum Dots Embedded in ZnSe/(ZnSe-MgS Superlattice) Microcavities. Physica Status Solidi (B): Basic Research, 2002, 229, 961-969.	1.5	3
241	Overhauser shift in photoluminescence of excitons with fine structure from a single self-assembled InAlAs quantum dot. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4372-4375.	0.8	3
242	Role of Nitrogen Precursor Supplies on InAs Quantum Dot Surfaces in Their Emission Wavelengths. Japanese Journal of Applied Physics, 2006, 45, L529-L532.	1.5	3
243	Anisotropic Lattice Deformation of InAs Self-Assembled Quantum Dots Embedded in GaNAs Strain Compensating Layers. Japanese Journal of Applied Physics, 2006, 45, L57-L59.	1.5	3
244	Fabrication and characterization of a highQmicrodisc laser using InAs quantum dot active regions. Nanotechnology, 2007, 18, 055401.	2.6	3
245	Precise slit-width control of niobium apertures for superconducting LEDs. Nanotechnology, 2011, 22, 045302.	2.6	3
246	Silver Embedded Nanomesas as Enhanced Single Quantum Dot Emitters in the Telecommunication C Band. Japanese Journal of Applied Physics, 2012, 51, 06FF12.	1.5	3
247	Cooper-Pair Radiative Recombination in Semiconductor Heterostructures: Impact on Quantum Optics and Optoelectronics. Japanese Journal of Applied Physics, 2012, 51, 010114.	1.5	3
248	Nonlocal biphoton generation in a Werner state from a single semiconductor quantum dot. Physical Review B, 2015, 91, .	3.2	3
249	Cooper-Pair Radiative Recombination in Semiconductor Heterostructures: Impact on Quantum Optics and Optoelectronics. Japanese Journal of Applied Physics, 2012, 51, 010114.	1.5	3
250	Investigation of Linearity of Photoacoustic Characteristics on Semiconductors Measured by Michelson Interferometry. Japanese Journal of Applied Physics, 1985, 24, 201.	1.5	2
251	Mode characteristics of gratingâ€incorporated channeledâ€substrateâ€planar GaAlAs lasers. Applied Physics Letters, 1985, 47, 667-669.	3.3	2
252	Ultrafast Response Evaluation of Virtual Excitation by Off-Resonant Optical Pulse Mixing in GaAs/AlGaAs Quantum Well Structures. Japanese Journal of Applied Physics, 1990, 29, L1973-L1976.	1.5	2

#	Article	IF	CITATIONS
253	Hydrogen-plasma and photo-effects on MOMBE of GaAs. Journal of Crystal Growth, 1991, 107, 1041-1042.	1.5	2
254	Are localized excitons responsible for lasing in disordered short period II–VI strained layer superlattices?. Journal of Crystal Growth, 1992, 117, 1077.	1.5	2
255	Exciton scattering processes in ZnSe/ZnSxSe1-x MQW structures. European Physical Journal Special Topics, 1993, 03, 91-94.	0.2	2
256	Comparison of Electrical and Optical Properties of n-i-i and p-i-n ZnSSe Heterostructure Diodes. Japanese Journal of Applied Physics, 1994, 33, 840-843.	1.5	2
257	Improvement of electrical and optical properties of ZnSSe p-n heterostructure diodes with optimization in metalorganic vapor phase epitaxy. Journal of Crystal Growth, 1994, 138, 750-754.	1.5	2
258	Metalorganic MBE Growth of Nitrogen-doped ZnSe: TAN Doping and Nitrogen Plasma Doping. Japanese Journal of Applied Physics, 1996, 35, 1436-1439.	1.5	2
259	Two-photon absorption coefficient measurements in strained-layer superlattices. Journal of Physics Condensed Matter, 1997, 9, 7667-7674.	1.8	2
260	Intrinsic and Extrinsic Excitonic Features in MgS/ZnSe Superlattices Revealed by Microspectroscopy. Japanese Journal of Applied Physics, 2000, 39, 501-504.	1.5	2
261	Hole activation from GaAs:Zn nanoclusters for p-type conduction in ZnSe. Applied Physics Letters, 2000, 76, 1701-1703.	3.3	2
262	Effect of GaNAs strain compensating layer over InAs quantum dots grown by MOMBE. , 0, , .		2
263	Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 403-407.	2.7	2
264	Dynamic nuclear polarization in a self-assembled InAlAs quantum dot. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3838-3842.	0.8	2
265	Single photon emission with high degree of circular polarization from a single quantum dot under zero magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1824-1827.	2.7	2
266	Exciton-phonon interactions observed in blue emission band in Te-delta-doped ZnSe. Journal of Applied Physics, 2008, 104, 033531.	2.5	2
267	Carrier flow and nonequilibrium superconductivity in superconductor-based LEDs. Applied Physics Express, 2014, 7, 073101.	2.4	2
268	Ultrahigh quality factor in a metal-embedded semiconductor microdisk cavity. Optics Letters, 2015, 40, 5766.	3.3	2
269	Subwavelength metallic cavities with high-Qresonance modes. Nanotechnology, 2015, 26, 085201.	2.6	2
270	OBSERVATION OF ACOUSTIC EMISSION FROM a-Si : H PIN JUNCTIONS. Journal De Physique Colloque, 1981, 42, C4-447-C4-450.	0.2	2

#	Article	IF	CITATIONS
271	Stable Two-Dimensional Oscillation in a Transverse- Distributed-Feedback Cavity Laser. Japanese Journal of Applied Physics, 1982, 21, 377.	1.5	1
272	Saturable Inter-Valence-Band Absorptions in 1.3 µm-InGaAsP Lasers. Japanese Journal of Applied Physics, 1983, 22, 303.	1.5	1
273	4-5 Âμm Emissions from 1.3-Âμm and 1.5-Âμm InGaAsP/InP Lasers: Evidence for Excitations in Split-Off Valence Band. Japanese Journal of Applied Physics, 1983, 22, L556-L558.	1.5	1
274	Transient response of photoluminescence to an electric field in a GaAs/Al0.7Ga0.3 As single quantum well: Evidence for field-induced increase in carrier lifetime. Surface Science, 1986, 174, 248-249.	1.9	1
275	One- and two-phonon scattering processes in ZnSe/ZnSxSe1â^'xsuperlattices studied by micro-Raman spectroscopy. Physical Review B, 1994, 50, 4988-4991.	3.2	1
276	Time-resolved photoluminescence studies of stimulated emission and exciton dynamics in ZnSe/ZnS0.18Se0.82 superlattices. Solid-State Electronics, 1994, 37, 1133-1136.	1.4	1
277	Comparison of triethylgallium and its amine-adduct on gas-phase reaction with trimethylamine-alane. Journal of Crystal Growth, 1994, 136, 152-156.	1.5	1
278	Quantitative study of mechanism responsible for high operating voltage in II–VI laser diodes. Journal of Crystal Growth, 1994, 138, 714-718.	1.5	1
279	Exciton dynamics in ZnSe/ZnS x Se1â^'x superlattices. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1429-1433.	0.4	1
280	Three-photon absorption coefficients in ZnSe/ZnS0.18Se0.82 strained-layer superlattices. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1996, 18, 465-469.	0.4	1
281	Nucleation in the Nanometer Scale Selective Area Growth of II-VI Semiconductors. Japanese Journal of Applied Physics, 1999, 38, L563-L566.	1.5	1
282	Enhancement of spontaneous emission by ZnS-based II–VI semiconductor photonic dots. Journal of Crystal Growth, 2000, 214-215, 1024-1028.	1.5	1
283	Selective Growth of Highly Packed Array of ZnCdS Quantum Dots with a Mask Prepared by Atomic Force Microscope Nanolithography. Japanese Journal of Applied Physics, 2001, 40, 1899-1901.	1.5	1
284	Metalorganic Molecular-Beam Epitaxial Growth and Optical Properties of Er-Doped GaNP. Japanese Journal of Applied Physics, 2002, 41, 1030-1033.	1.5	1
285	SiC Surface Nanostructures Induced by Self-Ordering of Nano-Facets. Materials Science Forum, 2004, 457-460, 407-410.	0.3	1
286	Observation of reflection high-energy electron diffraction oscillation during MOMBE growth of AlAs and related modulated semiconductor structures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 756-760.	2.7	1
287	Nucleation and Growth Mode of GaN on Vicinal SiC Surfaces. Japanese Journal of Applied Physics, 2007, 46, L348-L351.	1.5	1
288	Detailed Measurements of Nuclear Spin Polarizations in a Single InAlAs Quantum Dot Through Overhauser Shift of Photoluminescence. Journal of Superconductivity and Novel Magnetism, 2007, 20, 447-451.	1.8	1

#	Article	IF	CITATIONS
289	Fourier spectroscopy of decoherence of exciton and their complexes in single InAlAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 351-355.	0.8	1
290	Response to "Comment on â€~Luminescence study on evolution from Te isoelectronic centers to type-ll ZnTe quantum dots grown by metalorganic molecular-beam epitaxy'―[J. Crystal Growth 301–302 (2007) 277]. Journal of Crystal Growth, 2008, 310, 723.	1.5	1
291	Highly circular-polarized single photon generation from a single quantum dot at zero magnetic field. Microelectronics Journal, 2008, 39, 327-330.	2.0	1
292	LO phonon–plasmon coupled modes and carrier mobilities in heavily Se-doped Ga(As, N) thin films. Journal of Materials Science: Materials in Electronics, 2009, 20, 425-429.	2.2	1
293	Spinâ€flip quenching in trion state mediated by optical phonons in a single quantum dot. Physica Status Solidi (B): Basic Research, 2009, 246, 775-778.	1.5	1
294	Improved luminescence efficiency of InAs quantum dots grown on atomic terraced GaAs surface prepared with in-situ chemical etching. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 868-871.	0.8	1
295	GaSb quantum rings grown by metal organic molecular beam epitaxy. Journal of Crystal Growth, 2011, 323, 233-235.	1.5	1
296	Time-resolved measurements of Cooper-pair radiative recombination in InAs quantum dots. Journal of Applied Physics, 2015, 118, 073102.	2.5	1
297	Reduction of Radiation and Scattering Losses in SAW Guides. , 1975, , .		0
298	Analysis of oscillation characteristics and design of a plateâ€ŧype impatt oscillator. Electronics and Communications in Japan, 1980, 63, 58-64.	0.1	0
299	Low-threshold two-dimensional distributed Bragg reflector lasers. Electronics Letters, 1986, 22, 427.	1.0	0
300	Low Temperature GaAs Growth on GaAs and Si with Metal-Organic Molecular Beam Epitaxy Assisted by Hydrogen Plasma. Materials Research Society Symposia Proceedings, 1988, 144, 329.	0.1	0
301	Evaluation of Hydrogenation on Semiconductor Surfaces Treated with Hydrogen-Plasma Beam Excited by Electron Cyclotron Resonance. Japanese Journal of Applied Physics, 1991, 30, 3203-3208.	1.5	0
302	Are common-anion and common-cation heterostructures applicable as excellent II–VI laser materials?. Journal of Crystal Growth, 1992, 117, 1083.	1.5	0
303	Well width dependence of electron-phonon interaction in ZnSe/ZnSxSe1-x superlattices determined by micro-raman spectroscopy. Superlattices and Microstructures, 1994, 16, 47-49.	3.1	0
304	Radiative mechanisms in ZnSe/ZnSSe symmetric superlattices. Superlattices and Microstructures, 1994, 16, 367-370.	3.1	0
305	Two-photon absorption spectroscopy in ZnSe/ZnSSe strained-layer superlattices. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1635-1639.	0.4	0
306	Origin of size distributions in ZnSe self-organized quantum dots grown on ZnS layers. Journal of Electronic Materials, 2000, 29, 515-519.	2.2	0

#	Article	IF	CITATIONS
307	Erbium-doped GaP grown by MOMBE and their optical properties. Journal of Crystal Growth, 2002, 237-239, 1423-1427.	1.5	0
308	Ill–V–N-related quantum structures for 1.5â€[micro sign]m emission. IEE Proceedings: Optoelectronics, 2003, 150, 52.	0.8	0
309	Optical properties of GaAsNSe/GaAs superlattice investigated by means of piezoelectric photothermal spectroscopy for nonradiative electron transitions. IEE Proceedings: Optoelectronics, 2004, 151, 328-330.	0.8	0
310	Dynamical properties of atom-like emissions from single localized states in ZnCdS ternary mesa-shaped structures. Physica Status Solidi (B): Basic Research, 2004, 241, 503-506.	1.5	0
311	Study of optimal coupling of ZnS pyramidal microcavities with distributed Bragg reflectors. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1034-1037.	0.8	0
312	MOMBE Growth and Characterization of IIIâ€"V-N Compounds and Application to InAs Quantum Dots. , 2005, , 137-155.		0
313	Origin of asymmetric splitting of a neutral exciton in a single semiconductor quantum dot. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3908-3911.	0.8	0
314	Time-resolved photoluminescence in annealed self-assembled InAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4299-4302.	0.8	0
315	Novel Nano-Heterostructure Materials and Related Devices. , 2007, , 281-327.		0
316	Fundamental Properties of Wide Bandgap Semiconductors. , 2007, , 25-96.		0
317	Superconducting Effect on Radiative Recombinations in Long-wavelength Light Emitting Diode. , 2008, ,		0
318	Superconducting photonics and development of light emitting diodes based on new concept. , 2008, , .		0
319	First-order photon interference of a single photon from a single quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2536-2539.	2.7	Ο
320	Exploring Spontaneous Simultaneous Photon-pair Generation in Semiconductors. AIP Conference Proceedings, 2011, , .	0.4	0
321	Spectral and Transient Luminescence Measurements on GaSb/AlGaSb Quantum Wells Grown on GaSb/GaAs Heterojunctions with and without Interfacial Misfit Arrays. Japanese Journal of Applied Physics, 2013, 52, 022101.	1.5	0
322	Luminescence properties of CdS quantum dots embedded in monolithic II-VI microcavity. Springer Proceedings in Physics, 2001, , 675-676.	0.2	0
323	Silver Embedded Nanomesas as Enhanced Single Quantum Dot Emitters in the Telecommunication C Band. Japanese Journal of Applied Physics, 2012, 51, 06FF12.	1.5	0
324	Generation Mechanisms of Current-Injection-Induced Acoustic (CIA) Signals in Semiconductor Lasers. Japanese Journal of Applied Physics, 1982, 21, 110.	1.5	0

#	Article	IF	CITATIONS
325	Radiative recombination processes in ZnSe/ZnSexSe1â^'x multiple-quantum-well structures. , 1993, , 352-356.		0
326	Study with C-V Measurements on Nitrogen- Doped p-Type ZnSe Grown by MO. IEEJ Transactions on Fundamentals and Materials, 1997, 117, 78-83.	0.2	0
327	Microstructures of GaAsN grown on (001) GaAs by metalorganic molecular beam epitaxy. , 2018, , 197-200.		0