
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165635/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Recent applications of C–H functionalization in complex natural product synthesis. Chemical Society Reviews, 2018, 47, 8925-8967.	18.7	470
2	Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nature Biotechnology, 2002, 20, 805-809.	9.4	229
3	Protein-Reactive Natural Products. Angewandte Chemie - International Edition, 2005, 44, 5788-5809.	7.2	228
4	Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nature Biotechnology, 2005, 23, 1303-1307.	9.4	210
5	Chemical Strategies for Functional Proteomics. Molecular and Cellular Proteomics, 2002, 1, 781-790.	2.5	162
6	Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nature Communications, 2015, 6, 10093.	5.8	162
7	The Uranyl Cation as a Visibleâ€Light Photocatalyst for C(sp ³)â^'H Fluorination. Angewandte Chemie - International Edition, 2016, 55, 8923-8927.	7.2	142
8	An Enantioselective Synthesis of FR182877 Provides a Chemical Rationalization of Its Structure and Affords Multigram Quantities of Its Direct Precursor. Journal of the American Chemical Society, 2003, 125, 5393-5407.	6.6	141
9	Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chemistry and Biology, 2001, 8, 81-95.	6.2	136
10	Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. , 2007, 3, 117-125.		130
11	Pd-Catalyzed, <i>ortho</i> C–H Methylation and Fluorination of Benzaldehydes Using Orthanilic Acids as Transient Directing Groups. Journal of the American Chemical Society, 2018, 140, 2789-2792.	6.6	129
12	Synthesis of the Furanosteroidal Antibiotic Viridin. Angewandte Chemie - International Edition, 2004, 43, 1998-2001.	7.2	115
13	A Synthesis of (+)-FR182877, Featuring Tandem Transannular Dielsâ~'Alder Reactions Inspired by a Postulated Biogenesis. Journal of the American Chemical Society, 2002, 124, 4552-4553.	6.6	108
14	Convergent, Enantioselective Syntheses of Guanacastepenes A and E Featuring a Selective Cyclobutane Fragmentation1. Journal of the American Chemical Society, 2006, 128, 7025-7035.	6.6	104
15	Abyssomicins G and H and atrop-Abyssomicin C from the Marine Verrucosispora Strain AB-18-032â€. Journal of Antibiotics, 2007, 60, 391-394.	1.0	102
16	Synthesis of Fluorenones from Benzaldehydes and Aryl Iodides: Dual C–H Functionalizations Using a Transient Directing Group. Organic Letters, 2017, 19, 1140-1143.	2.4	100
17	A Diels-Alder Macrocyclization Enables an Efficient Asymmetric Synthesis of the Antibacterial Natural Product Abyssomicin C. Angewandte Chemie - International Edition, 2005, 44, 6533-6537.	7.2	95
18	Bond formations by intermolecular and intramolecular trappings of acylketenes and their applications in natural product synthesis. Chemical Society Reviews, 2009, 38, 3022.	18.7	95

#	Article	IF	CITATIONS
19	Pd-Catalyzed <i>Ortho</i> C–H Hydroxylation of Benzaldehydes Using a Transient Directing Group. Organic Letters, 2017, 19, 6280-6283.	2.4	83
20	An Enantiospecific Synthesis of Jiadifenolide. Angewandte Chemie - International Edition, 2014, 53, 5332-5335.	7.2	81
21	A Convergent Synthesis of the Tricyclic Architecture of the Guanacastepenes Featuring a Selective Ring Fragmentation. Organic Letters, 2002, 4, 2063-2066.	2.4	71
22	(â^')-FR182877 Is a Potent and Selective Inhibitor of Carboxylesterase-1. Angewandte Chemie - International Edition, 2003, 42, 5480-5484.	7.2	57
23	Cyclostreptin (FR182877), an Antitumor Tubulin-Polymerizing Agent Deficient in Enhancing Tubulin Assembly Despite Its High Affinity for the Taxoid Site. Biochemistry, 2005, 44, 11525-11538.	1.2	55
24	Intramolecular Allenolate Acylations in Studies toward a Synthesis of FR182877. Organic Letters, 2001, 3, 4307-4310.	2.4	51
25	An interrupted Ugi reaction enables the preparation of substituted indoxyls and aminoindoles. Tetrahedron, 2009, 65, 3096-3101.	1.0	51
26	A Rapid, Asymmetric Synthesis of the Decahydrofluorene Core of the Hirsutellones. Organic Letters, 2009, 11, 701-703.	2.4	50
27	Postulated Biogenesis of WS9885B and Progress toward an Enantioselective Synthesis. Organic Letters, 1999, 1, 645-648.	2.4	48
28	The Abyssomicin C family as in vitro inhibitors of Mycobacterium tuberculosis. Tuberculosis, 2010, 90, 298-300.	0.8	47
29	Mechanistic and structural requirements for active site labeling of phosphoglycerate mutase by spiroepoxides. Molecular BioSystems, 2007, 3, 495.	2.9	46
30	A concise synthesis of the molecular framework of pleuromutilin. Chemical Communications, 2011, 47, 1500-1502.	2.2	43
31	A chemical synthesis of 11-methoxy mitragynine pseudoindoxyl featuring the interrupted Ugi reaction. Chemical Science, 2012, 3, 2849.	3.7	42
32	Design, Synthesis, and Reactivity of 1-Hydrazinodienes for Use in Organic Synthesis. Journal of the American Chemical Society, 2005, 127, 8612-8613.	6.6	40
33	Efficient substrate screening and inhibitor testing of human CYP4Z1 using permeabilized recombinant fission yeast. Biochemical Pharmacology, 2017, 146, 174-187.	2.0	40
34	Pd(II)-Catalyzed Synthesis of Benzocyclobutenes by β-Methylene-Selective C(sp ³)–H Arylation with a Transient Directing Group. Journal of the American Chemical Society, 2021, 143, 20035-20041.	6.6	37
35	A Concise Synthesis of Fumagillol. Angewandte Chemie - International Edition, 1999, 38, 971-974.	7.2	35
36	Toward a mild dehydroformylation using base-metal catalysis. Chemical Science, 2017, 8, 1954-1959.	3.7	35

3

#	Article	IF	CITATIONS
37	Rapid Construction of a Benzoâ€Fused Indoxamycin Core Enabled by Siteâ€Selective Câ^'H Functionalizations. Angewandte Chemie - International Edition, 2016, 55, 8270-8274.	7.2	34
38	The Uranyl Cation as a Visible‣ight Photocatalyst for C(sp 3)â~'H Fluorination. Angewandte Chemie, 2016, 128, 9069-9073.	1.6	33
39	lr(<scp>iii</scp>)-catalyzed <i>ortho</i> C–H alkylations of (hetero)aromatic aldehydes using alkyl boron reagents. Chemical Science, 2018, 9, 8951-8956.	3.7	33
40	Architectural self-construction in nature and chemical synthesis. Bioorganic and Medicinal Chemistry, 2003, 11, 3225-3228.	1.4	32
41	Expanding the pleuromutilin class of antibiotics by de novo chemical synthesis. Chemical Science, 2011, 2, 1258.	3.7	26
42	CHEMISTRY: Enhanced: A Dash of Proline Makes Things Sweet. Science, 2004, 305, 1725-1726.	6.0	24
43	Synthesis enables a structural revision of the Mycobacterium tuberculosis-produced diterpene, edaxadiene. Chemical Science, 2010, 1, 202.	3.7	24
44	Toward a Synthesis of Hirsutellone B by the Concept of Double Cyclization. Journal of Organic Chemistry, 2013, 78, 9584-9607.	1.7	24
45	Crystal Structure of the Cyclostreptin-Tubulin Adduct: Implications for Tubulin Activation by Taxane-Site Ligands. International Journal of Molecular Sciences, 2019, 20, 1392.	1.8	24
46	Cyclization by C(sp ³)–H Arylation with a Transient Directing Group for the Diastereoselective Preparation of Indanes. ACS Catalysis, 2021, 11, 3115-3127.	5.5	22
47	Transition States of the Retro-Ene Reactions of Allylic Diazenes. Organic Letters, 2006, 8, 3105-3107.	2.4	21
48	Tandem Diels–Alder and Retro-Ene Reactions of 1-Sulfenyl- and 1-Sulfonyl-1,3-dienes as a Traceless Route to Cyclohexenes. Journal of the American Chemical Society, 2014, 136, 9918-9921.	6.6	21
49	Development of a Bioâ€Inspired Dual Catalytic System for Alkane Dehydrogenation. Israel Journal of Chemistry, 2017, 57, 259-269.	1.0	21
50	A Concise and Convergent Synthesis of PA-824. Journal of Organic Chemistry, 2010, 75, 7479-7482.	1.7	19
51	Importance of asparagine-381 and arginine-487 for substrate recognition in CYP4Z1. Biochemical Pharmacology, 2020, 174, 113850.	2.0	17
52	Seebach's Conjunctive Reagent Enables Double Cyclizations. Organic Letters, 2010, 12, 2746-2749.	2.4	16
53	The Catalytic Asymmetric Diels–Alder Reactions and Postâ€cycloaddition Reductive Transpositions of 1â€Hydrazinodienes. Chemistry - A European Journal, 2011, 17, 11131-11134.	1.7	16
54	<i>In Vitro</i> Reconstitution of OxyA Enzymatic Activity Clarifies Late Steps in Vancomycin Biosynthesis. ACS Chemical Biology, 2017, 12, 2248-2253.	1.6	13

#	Article	IF	CITATIONS
55	Modulating OxyB-Catalyzed Cross-Coupling Reactions in Vancomycin Biosynthesis by Incorporation of Diverse <scp>d</scp> -Tyr Analogues. Journal of Organic Chemistry, 2018, 83, 7309-7317.	1.7	12
56	Installation of multiple aryl ether crosslinks onto non-native substrate peptides by the vancomycin OxyB. Tetrahedron, 2018, 74, 3231-3237.	1.0	9
57	New Proluciferin Substrates for Human CYP4 Family Enzymes. Applied Biochemistry and Biotechnology, 2021, 193, 218-237.	1.4	9
58	A C–H Functionalization Strategy Enables an Enantioselective Formal Synthesis of (â^)-Aflatoxin B ₂ . Organic Letters, 2021, 23, 9393-9397.	2.4	9
59	An expedient synthesis of maraviroc (UK-427,857) via C–H functionalization. Tetrahedron Letters, 2015, 56, 3620-3623.	0.7	8
60	A Stereocontrolled Annulation of the Taccalonolide Epoxy Lactone onto the Molecular Framework of <i>trans</i> -Androsterone. Organic Letters, 2017, 19, 4892-4895.	2.4	7
61	Rhodium-Catalyzed C–H Amination: A Case Study of Selectivity in C–H Functionalization Reactions. Journal of Chemical Education, 2018, 95, 2243-2248.	1.1	7
62	Synthesis of (+)-Lineariifolianone and Related Cyclopropenone-Containing Sesquiterpenoids. Journal of Organic Chemistry, 2019, 84, 5524-5534.	1.7	7
63	Donor–Acceptor–Acceptor 1,3-Bisdiazo Compounds: An Exploration of Synthesis and Stepwise Reactivity. Organic Letters, 2020, 22, 1791-1795.	2.4	6
64	Rapid Construction of a Benzoâ€Fused Indoxamycin Core Enabled by Siteâ€Selective Câ^'H Functionalizations. Angewandte Chemie, 2016, 128, 8410-8414.	1.6	4
65	Design and synthesis of molecular scaffolds with anti-infective activity. Tetrahedron, 2016, 72, 3579-3592.	1.0	4
66	Diastereoselective syntheses of substituted cis-hydrindanones featuring sequential inter- and intramolecular Michael reactions. Tetrahedron, 2016, 72, 3713-3717.	1.0	3
67	New luciferin-based probe substrates for human CYP26A1. Biochemistry and Biophysics Reports, 2020, 24, 100861.	0.7	3
68	Conversion of five proluciferin esters by human cytochrome P450 enzymes. Biotechnology Journal, 2021, 16, 2100007.	1.8	3
69	A Dash of Proline Makes Things Sweet. ChemInform, 2005, 36, no.	0.1	0
70	Protein-Reactive Natural Products. ChemInform, 2005, 36, no.	0.1	0