Jiale Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165563/publications.pdf Version: 2024-02-01

LIALE XIE

#	Article	IF	CITATIONS
1	Chemically Coupled Fe ₂ O ₃ /Graphene Hydrogel as Binderâ€Free Anode Material for Stable Niâ€Fe Battery with High Energy and Power Density. Batteries and Supercaps, 2022, 5, .	2.4	3
2	Oxidation state modulation of CoMOF with Zn for accelerating photoelectrochemical water oxidation of borate-irradiation treated BiVO4. Electrochimica Acta, 2022, 421, 140483.	2.6	5
3	Highâ€Quality Coating of Conformal and Oriented Metal–Organic Framework Cocatalyst Layer for Efficient Photoelectrocatalysis. Advanced Materials Interfaces, 2021, 8, 2101069.	1.9	8
4	Defective Metal–Organic Framework Assisted with Nitrogen Doping Enhances the Photoelectrochemical Performance of BiVO ₄ . ACS Applied Energy Materials, 2021, 4, 13199-13207.	2.5	17
5	Coaxial Cableâ€Like Carbon Nanotubesâ€Based Active Fibers for Highly Capacitive and Stable Supercapacitor. Advanced Materials Interfaces, 2020, 7, 2000949.	1.9	16
6	Cobalt Metal–Organic Framework Ultrathin Cocatalyst Overlayer for Improved Photoelectrochemical Activity of Ti-Doped Hematite. ACS Applied Energy Materials, 2020, 3, 4867-4876.	2.5	25
7	Nanostructuring Co 3 O 4 to Tune Capacitive Behaviors: From Low to High Dimensions. ChemistrySelect, 2020, 5, 3638-3643.	0.7	1
8	Recent progress in carbon-based materials as catalysts for electrochemical and photocatalytic water splitting. , 2019, , 173-200.		2
9	Tailoring surface states by sequential doping of Ti and Mg for kinetically enhanced hematite photoanode. Journal of Colloid and Interface Science, 2019, 542, 441-450.	5.0	16
10	Biowaste-Derived Three-Dimensional Porous Network Carbon and Bioseparator for High-Performance Asymmetric Supercapacitor. ACS Applied Energy Materials, 2018, 1, 616-622.	2.5	44
11	Hydrothermally Treating High-Ti Cinder for a Near Full-Sunlight-Driven Photocatalyst toward Highly Efficient H ₂ Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 5076-5084.	3.2	2
12	Evaluating the Role of Nanostructured Current Collectors in Energy Storage Capability of Supercapacitor Electrodes with Thick Electroactive Materials Layers. Advanced Functional Materials, 2018, 28, 1705107.	7.8	62
13	Puzzles and confusions in supercapacitor and battery: Theory and solutions. Journal of Power Sources, 2018, 401, 213-223.	4.0	220
14	Self-Improvement of Ti:Fe ₂ O ₃ Photoanodes: Photoelectrocatalysis Improvement after Long-Term Stability Testing in Alkaline Electrolyte. ACS Applied Energy Materials, 2018, 1, 2769-2775.	2.5	44
15	FeCoW multimetal oxide-coatedÂW:BiVO ₄ photoanode for efficient oxygen evolution. Sustainable Energy and Fuels, 2018, 2, 2053-2059.	2.5	9
16	Significantly improve photoelectrochemical performance of Ti:Fe2O3 with CdSe modification and surface oxidation. International Journal of Hydrogen Energy, 2018, 43, 14130-14139.	3.8	6
17	Self-assembling reduced graphene quantum dots on hematite photoanode for passivating surface states toward significantly improved water splitting. International Journal of Hydrogen Energy, 2017, 42, 7158-7165.	3.8	20
18	Soft- to network hard-material for constructing both ion- and electron-conductive hierarchical porous structure to significantly boost energy density of a supercapacitor. Journal of Colloid and Interface Science, 2017, 485, 137-143.	5.0	15

JIALE XIE

#	Article	IF	CITATIONS
19	DNA@Mn3(PO4)2 Nanoparticles Supported with Graphene Oxide as Photoelectrodes for Photoeletrocatalysis. Nanoscale Research Letters, 2017, 12, 17.	3.1	14
20	MoO ₂ nanosheets embedded in amorphous carbon matrix for sodium-ion batteries. Royal Society Open Science, 2017, 4, 170892.	1.1	13
21	Hydrothermally hollow SnO ₂ microspheres as sodium ion battery anode with high capacity and superior stability. Micro and Nano Letters, 2017, 12, 777-780.	0.6	13
22	Chlorinated fluorine doped tin oxide electrodes with high work function for highly efficient planar perovskite solar cells. Applied Physics Letters, 2017, 110, .	1.5	6
23	Bi-functional ferroelectric BiFeO 3 passivated BiVO 4 photoanode for efficient and stable solar water oxidation. Nano Energy, 2017, 31, 28-36.	8.2	150
24	Layered Na ₂ Ti ₂ O ₄ (OH) ₂ and K ₂ Ti ₂ O ₄ (OH) ₂ Nanoarrays for Na/Li-Ion Intercalation Systems: Effect of Ion Size. Journal of the Electrochemical Society, 2016, 163, A2203-A2210.	1.3	8
25	Biomassâ€Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Directâ€Electronâ€Transferâ€Based Glucose Sensing. ChemElectroChem, 2016, 3, 144-151.	1.7	26
26	Polymer-Mediated Self-Assembly of TiO ₂ @Cu ₂ O Core–Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 6082-6092.	4.0	105
27	Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application. Journal of Colloid and Interface Science, 2016, 461, 369-375.	5.0	61
28	Au@CdS Core–Shell Nanoparticlesâ€Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting. Advanced Science, 2015, 2, 1500135.	5.6	77
29	Architecting smart "umbrella―Bi ₂ S ₃ /rGO-modified TiO ₂ nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. Journal of Materials Chemistry A, 2015, 3, 1235-1242.	5.2	103
30	Tailoring Co(OH)2 hollow nanostructures via Cu2O template etching for high performance supercapacitors. Journal of Colloid and Interface Science, 2015, 457, 212-217.	5.0	17
31	Modification of a thin layer of α-Fe2O3 onto a largely voided TiO2 nanorod array as a photoanode to significantly improve the photoelectrochemical performance toward water oxidation. RSC Advances, 2015, 5, 62611-62618.	1.7	29
32	Fluffy-ball-shaped carbon nanotube–TiO ₂ nanorod nanocomposites for photocatalytic degradation of methylene blue. RSC Advances, 2015, 5, 42580-42586.	1.7	16
33	Solvent-mediated directionally self-assembling MoS ₂ nanosheets into a novel worm-like structure and its application in sodium batteries. Journal of Materials Chemistry A, 2015, 3, 9932-9937.	5.2	74
34	Hierarchically porous graphitic carbon nitride: large-scale facile synthesis and its application toward photocatalytic dye degradation. RSC Advances, 2014, 4, 59436-59439.	1.7	54
35	DNAâ€Templated Biomimetic Enzyme Sheets on Carbon Nanotubes to Sensitively In Situ Detect Superoxide Anions Released from Cells. Advanced Functional Materials, 2014, 24, 5897-5903.	7.8	59
36	One-pot synthesis of one-dimensional CdTe-cystine nanocomposite for humidity sensing. Nanotechnology, 2014, 25, 115703.	1.3	1

JIALE XIE

#	Article	IF	CITATIONS
37	Interface functionalization with polymer self-assembly to boost photovoltage of Cu 2 O/ZnO nanowires solar cells. International Journal of Hydrogen Energy, 2014, 39, 16227-16233.	3.8	13
38	Bi ₂ S ₃ nanorods modified with Co(OH) ₂ ultrathin nanosheets to significantly improve its pseudocapacitance for high specific capacitance. RSC Advances, 2014, 4, 48666-48670.	1.7	22
39	UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 1-7.	2.3	68
40	Direct Observation of Molecular Orbitals in an Individual Single-Molecule Magnet Mn ₁₂ on Bi(111). ACS Nano, 2013, 7, 6825-6830.	7.3	19
41	Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O–ZnO nanowire solar cells. Physical Chemistry Chemical Physics, 2013, 15, 15905.	1.3	28
42	A new class of fluorescent-dots: long luminescent lifetime bio-dots self-assembled from DNA at low temperatures. Scientific Reports, 2013, 3, 2957.	1.6	65
43	Graphene Quantum-Dot-Doped Polypyrrole Counter Electrode for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 2047-2052.	4.0	162
44	Transparently Passivating Catalyst of Hydrated Manganese Phosphate for Photoelectrochemical O2 Generation. ACS Applied Energy Materials, 0, , .	2.5	0