Mengdi Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165539/publications.pdf

Version: 2024-02-01

1163117 1474206 9 490 8 9 citations h-index g-index papers 9 9 9 428 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environmental Pollution, 2020, 257, 113599.	7.5	146
2	Source Apportionment and Secondary Transformation of Atmospheric Nonmethane Hydrocarbons in Chengdu, Southwest China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9741-9763.	3.3	108
3	Sources and abatement mechanisms of VOCs in southern China. Atmospheric Environment, 2019, 201, 28-40.	4.1	73
4	Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi'an, China. Atmospheric Chemistry and Physics, 2021, 21, 4939-4958.	4.9	52
5	Characteristics and formation mechanism of persistent extreme haze pollution events in Chengdu, southwestern China. Environmental Pollution, 2019, 251, 1-12.	7.5	40
6	Assessing the Ratios of Formaldehyde and Glyoxal to NO ₂ as Indicators of O ₃ â€"NO _{<i>x</i>} â€"VOC Sensitivity. Environmental Science & Environm	10.0	27
7	Characteristics and sources of volatile organic compounds during pollution episodes and clean periods in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 799, 149491.	8.0	24
8	Insights into the phenomenon of an explosive growth and sharp decline in haze: A case study in Beijing. Journal of Environmental Sciences, 2019, 84, 122-132.	6.1	14
9	Advances on Atmospheric Oxidation Mechanism of Typical Aromatic Hydrocarbons. Acta Chimica Sinica, 2021, 79, 1214.	1.4	6