Jun Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165512/publications.pdf

Version: 2024-02-01

13068 5806 26,907 202 68 161 h-index citations g-index papers 202 202 202 22825 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advanced Asymmetric Supercapacitors Based on Ni(OH) ₂ /Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 2012, 22, 2632-2641.	7.8	1,855
2	Asymmetric Supercapacitors Based on Graphene/MnO ₂ and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials, 2011, 21, 2366-2375.	7.8	1,827
3	Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014, 4, 1300816.	10.2	1,727
4	Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Advanced Functional Materials, 2017, 27, 1701264.	7.8	1,354
5	Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon, 2010, 48, 3825-3833.	5 . 4	1,272
6	A Threeâ€Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Advanced Materials, 2010, 22, 3723-3728.	11.1	1,182
7	Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy and Environmental Science, 2016, 9, 729-762.	15.6	1,037
8	Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 2010, 48, 487-493.	5.4	999
9	Facile Synthesis of Graphene Nanosheets <i>via</i> Fe Reduction of Exfoliated Graphite Oxide. ACS Nano, 2011, 5, 191-198.	7.3	818
10	Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon, 2014, 67, 119-127.	5.4	585
11	An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 2010, 48, 1686-1689.	5 . 4	557
12	Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources, 2010, 195, 3041-3045.	4.0	540
13	Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon, 2010, 48, 1731-1737.	5.4	534
14	Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochimica Acta, 2010, 55, 6973-6978.	2.6	462
15	Template-Assisted Low Temperature Synthesis of Functionalized Graphene for Ultrahigh Volumetric Performance Supercapacitors. ACS Nano, 2014, 8, 4720-4729.	7.3	413
16	High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon, 2012, 50, 2179-2188.	5.4	397
17	Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. Journal of Power Sources, 2009, 194, 1202-1207.	4.0	358
18	Nitrogenâ€Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose. Advanced Functional Materials, 2014, 24, 3953-3961.	7.8	336

#	Article	IF	Citations
19	Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries. ACS Nano, 2011, 5, 2787-2794.	7.3	277
20	Ternary Transition Metal Sulfides Embedded in Graphene Nanosheets as Both the Anode and Cathode for High-Performance Asymmetric Supercapacitors. Chemistry of Materials, 2018, 30, 1055-1068.	3.2	268
21	Templateâ€Directed Synthesis of Pillaredâ€Porous Carbon Nanosheet Architectures: Highâ€Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2, 419-424.	10.2	267
22	Creating oxygen-vacancies in MoO3- nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy, 2019, 58, 455-465.	8.2	266
23	Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry, 2012, 22, 11494.	6.7	261
24	Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 2012, 50, 1699-1703.	5.4	252
25	Interconnected Frameworks with a Sandwiched Porous Carbon Layer/Graphene Hybrids for Supercapacitors with High Gravimetric and Volumetric Performances. Advanced Energy Materials, 2014, 4, 1400500.	10.2	234
26	Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Materials Research Bulletin, 2011, 46, 315-318.	2.7	209
27	Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon, 2013, 60, 481-487.	5.4	201
28	Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 13589-13602.	5.2	199
29	Highâ€Capacity and Kinetically Accelerated Lithium Storage in MoO ₃ Enabled by Oxygen Vacancies and Heterostructure. Advanced Energy Materials, 2021, 11, 2101712.	10.2	184
30	Supercapacitors Based on Graphene-Supported Iron Nanosheets as Negative Electrode Materials. ACS Nano, 2013, 7, 11325-11332.	7.3	180
31	Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion. Carbon, 2009, 47, 2296-2299.	5.4	178
32	MXene-derived TiO ₂ /reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 5363-5372.	5.2	178
33	Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon, 2013, 52, 209-218.	5.4	160
34	3D Porous Oxidationâ€Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward Highâ€Performance Supercapacitors. Advanced Functional Materials, 2021, 31, 2101087.	7.8	154
35	The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. Journal of Materials Chemistry A, 2019, 7, 9078-9085.	5.2	151
36	MnO2–graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells. Journal of Power Sources, 2012, 216, 187-191.	4.0	147

#	Article	IF	CITATIONS
37	Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon, 2013, 60, 558-561.	5.4	139
38	Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors. Journal of Power Sources, 2014, 247, 197-203.	4.0	135
39	A heterogeneous interface on NiS@Ni ₃ S ₂ /NiMoO ₄ heterostructures for efficient urea electrolysis. Journal of Materials Chemistry A, 2020, 8, 18055-18063.	5.2	134
40	Induction of Planar Sodium Growth on MXene (Ti ₃ C ₂ T _{<i>x</i>})-Modified Carbon Cloth Hosts for Flexible Sodium Metal Anodes. ACS Nano, 2020, 14, 8744-8753.	7. 3	125
41	Lithiophilic Three-Dimensional Porous Ti ₃ C ₂ T <i>>_x</i> -rGO Membrane as a Stable Scaffold for Safe Alkali Metal (Li or Na) Anodes. ACS Nano, 2019, 13, 14319-14328.	7. 3	123
42	Facile Synthesis of Metal–Organic Framework-Derived CoSe ₂ Nanoparticles Embedded in the N-Doped Carbon Nanosheet Array and Application for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 9365-9375.	4.0	122
43	Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors. Nano-Micro Letters, 2019, 11, 30.	14.4	120
44	In situ grown 3D hierarchical MnCo2O4.5@Ni(OH)2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation. Chemical Engineering Journal, 2020, 381, 122603.	6.6	117
45	Aggregationâ€Resistant 3D Ti ₃ C ₂ T <i>_x</i> MXene with Enhanced Kinetics for Potassium Ion Hybrid Capacitors. Advanced Functional Materials, 2020, 30, 2005663.	7.8	117
46	Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. Journal of Power Sources, 2016, 307, 190-198.	4.0	112
47	High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. Journal of Materials Chemistry A, 2014, 2, 16678-16686.	5.2	106
48	Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells. Bioelectrochemistry, 2014, 95, 23-28.	2.4	105
49	Highly Sensitive Surface-Enhanced Raman Spectroscopy (SERS) Platforms Based on Silver Nanostructures Fabricated on Polyaniline Membrane Surfaces. ACS Applied Materials & Interfaces, 2012, 4, 2752-2756.	4.0	103
50	Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochimica Acta, 2018, 259, 752-761.	2.6	103
51	A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry Communications, 2010, 12, 1279-1282.	2.3	98
52	Electrostatic self-assembly of MXene and edge-rich CoAl layered double hydroxide on molecular-scale with superhigh volumetric performances. Journal of Energy Chemistry, 2020, 46, 105-113.	7.1	97
53	Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors. Carbon, 2013, 54, 241-248.	5.4	95
54	MXene-Derived Defect-Rich TiO2@rGO as High-Rate Anodes for Full Na Ion Batteries and Capacitors. Nano-Micro Letters, 2020, 12, 128.	14.4	93

#	Article	IF	Citations
55	Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Materials Research Bulletin, 2010, 45, 210-215.	2.7	91
56	Fe3O4 nanospheres in situ decorated graphene as high-performance anode for asymmetric supercapacitor with impressive energy density. Journal of Colloid and Interface Science, 2019, 536, 235-244.	5.0	89
57	A self-healing hydrogel electrolyte for flexible solid-state supercapacitors. Chemical Engineering Journal, 2020, 401, 125456.	6.6	85
58	NiS2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors. Chemical Engineering Journal, 2021, 406, 126713.	6.6	83
59	Highâ€Energyâ€Density Aqueous Magnesiumâ€Ion Battery Based on a Carbonâ€Coated FeVO ₄ Ano and a Mgâ€OMSâ€1 Cathode. Chemistry - A European Journal, 2017, 23, 17118-17126.	de 1.7	80
60	Porous Ni 2 P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium. International Journal of Hydrogen Energy, 2018, 43, 9316-9325.	3.8	80
61	Rational design of NiCo2S4 nanowire arrays on nickle foam as highly efficient and durable electrocatalysts toward urea electrooxidation. Chemical Engineering Journal, 2019, 359, 1652-1658.	6.6	79
62	Hollow Co–Mo–Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors. Journal of Power Sources, 2021, 490, 229532.	4.0	79
63	Anionic P-substitution toward ternary Ni–S–P nanoparticles immobilized graphene with ultrahigh rate and long cycle life for hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 24374-24388.	5.2	77
64	Hierarchical NiCo2O4 nanowire array supported on Ni foam for efficient urea electrooxidation in alkaline medium. Journal of Power Sources, 2019, 412, 265-271.	4.0	77
65	Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Research, 2018, 11, 4744-4758.	5.8	76
66	Template-directed assembly of urchin-like CoS _x /Co-MOF as an efficient bifunctional electrocatalyst for overall water and urea electrolysis. Inorganic Chemistry Frontiers, 2020, 7, 2602-2610.	3.0	75
67	High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor. Chemical Engineering Journal, 2018, 352, 459-468.	6.6	74
68	3D Macroporous Oxidationâ€Resistant Ti ₃ C ₂ T <i>>_x</i> MXene Hybrid Hydrogels for Enhanced Supercapacitive Performances with Ultralong Cycle Life. Advanced Functional Materials, 2022, 32, 2109479.	7.8	74
69	Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochimica Acta, 2014, 137, 352-358.	2.6	73
70	2D Titanium Carbide/Reduced Graphene Oxide Heterostructures for Supercapacitor Applications. Batteries and Supercaps, 2018, 1, 33-38.	2.4	72
71	Self-Supported FeNi-P Nanosheets with Thin Amorphous Layers for Efficient Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 9640-9648.	3.2	71
72	Versatile Interfacial Self-Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene Based Composites with Enhanced Kinetics for Superior Lithium and Sodium Storage. ACS Nano, 2021, 15, 12140-12150.	7.3	70

#	Article	IF	Citations
73	Binder-Free Hierarchical Urchin-like Manganese–Cobalt Selenide with High Electrochemical Energy Storage Performance. ACS Applied Energy Materials, 2019, 2, 3595-3604.	2.5	69
74	A highly efficient and durable water splitting system: platinum sub-nanocluster functionalized nickel–iron layered double hydroxide as the cathode and hierarchical nickel–iron selenide as the anode. Journal of Materials Chemistry A, 2019, 7, 2831-2837.	5.2	65
75	Transforming Carnation-Shaped MOF-Ni to Ni–Fe Prussian Blue Analogue Derived Efficient Bifunctional Electrocatalyst for Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 16037-16045.	3.2	65
76	Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors. Electrochimica Acta, 2014, 146, 548-555.	2.6	64
77	The synergy of a three filler combination in the conductivity of epoxy composites. Materials Letters, 2010, 64, 2376-2379.	1.3	63
78	Structurally stable ultrathin 1T-2H MoS2 heterostructures coaxially aligned on carbon nanofibers toward superhigh-energy-density supercapacitor and enhanced electrocatalysis. Chemical Engineering Journal, 2020, 399, 125672.	6.6	63
79	Simultaneously boosting hydrogen production and ethanol upgrading using a highly-efficient hollow needle-like copper cobalt sulfide as a bifunctional electrocatalyst. Journal of Colloid and Interface Science, 2021, 602, 325-333.	5.0	63
80	A flexible and high voltage symmetric supercapacitor based on hybrid configuration of cobalt hexacyanoferrate/reduced graphene oxide hydrogels. Chemical Engineering Journal, 2018, 335, 321-329.	6.6	61
81	Coralloidal carbon-encapsulated CoP nanoparticles generated on biomass carbon as a high-rate and stable electrode material for lithium-ion batteries. Journal of Colloid and Interface Science, 2018, 530, 579-585.	5.0	60
82	The FeVO4·0.9H2O/Graphene composite as anode in aqueous magnesium ion battery. Electrochimica Acta, 2017, 256, 357-364.	2.6	58
83	NiFe2O4 nanocubes anchored on reduced graphene oxide cryogel to achieve a 1.8â€√ flexible solid-state symmetric supercapacitor. Chemical Engineering Journal, 2019, 360, 171-179.	6.6	58
84	Twoâ€Dimensional Titanium Carbide MXene as a Capacitorâ€Type Electrode for Rechargeable Aqueous Liâ€Ion and Naâ€Ion Capacitor Batteries. ChemElectroChem, 2017, 4, 3018-3025.	1.7	56
85	Growing NiS2 nanosheets on porous carbon microtubes for hybrid sodium-ion capacitors. Journal of Power Sources, 2020, 451, 227737.	4.0	55
86	One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Materials Letters, 2013, 101, 29-32.	1.3	53
87	Rational design of NiCo2S4 nanoparticles @ N-doped CNT for hybrid supercapacitor. Applied Surface Science, 2018, 447, 165-172.	3.1	53
88	Facile and rapid synthesis of highly crumpled graphene sheets as high-performance electrodes for supercapacitors. RSC Advances, 2013, 3, 2566.	1.7	50
89	High-performance aqueous asymmetric supercapacitor based on spinel LiMn2O4 and nitrogen-doped graphene/porous carbon composite. Electrochimica Acta, 2015, 180, 287-294.	2.6	50
90	Hierarchical copper cobalt sulfides nanowire arrays for high-performance asymmetric supercapacitors. Applied Surface Science, 2019, 487, 198-205.	3.1	50

#	Article	IF	CITATIONS
91	Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts toward Hydrogen Evolution in Both Alkaline and Acidic Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 7804-7811.	3.2	48
92	Preparation and electrochemical characteristics of manganese dioxide/graphite nanoplatelet composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 174-178.	1.7	47
93	Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 561, 203-210.	5.0	47
94	Oil sorption and recovery by using vertically aligned carbon nanotubes. Carbon, 2010, 48, 4197-4200.	5.4	44
95	Free-Standing P-Doped NiSe ₂ /MoSe ₂ Catalyst for Efficient Hydrogen Evolution in Acidic and Alkaline Media. ACS Sustainable Chemistry and Engineering, 2022, 10, 279-287.	3.2	44
96	Polyaniline-modified porous carbon tube bundles composite for high-performance asymmetric supercapacitors. Electrochimica Acta, 2018, 292, 458-467.	2.6	43
97	Microwave-assisted synthesis of carbon dots modified graphene for full carbon-based potassium ion capacitors. Carbon, 2021, 178, 1-9.	5.4	42
98	In situ growth of NiO·85Se on graphene as a robust electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 10486-10493.	3.8	41
99	Porous and free-standing Ti3C2T -RGO film with ultrahigh gravimetric capacitance for supercapacitors. Chinese Chemical Letters, 2020, 31, 1004-1008.	4.8	41
100	Densely stacked bubble-pillared graphene blocks for high volumetric performance supercapacitors. Energy Storage Materials, 2015, 1, 42-50.	9.5	40
101	Freestanding 3D Polypyrrole@reduced graphene oxide hydrogels as binder-free electrode materials for flexible asymmetric supercapacitors. Journal of Colloid and Interface Science, 2019, 536, 291-299.	5.0	39
102	Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density. Electrochimica Acta, 2013, 114, 165-172.	2.6	38
103	Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery. Journal of Energy Chemistry, 2020, 45, 52-58.	7.1	37
104	A Novel Anode for Direct Borohydride-Hydrogen Peroxide Fuel Cell: Au Nanoparticles Decorated 3D Self-Supported Reduced Graphene Oxide Foam. ACS Sustainable Chemistry and Engineering, 2019, 7, 11129-11137.	3.2	36
105	Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis. Dalton Transactions, 2020, 49, 5646-5652.	1.6	36
106	A novel <i>calendula</i> -like MnNb ₂ O ₆ anchored on graphene sheet as high-performance intercalation pseudocapacitive anode for lithium-ion capacitors. Journal of Materials Chemistry A, 2019, 7, 2855-2863.	5.2	35
107	Vertically oriented Ni-doped MoS2 nanosheets supported on hollow carbon microtubes for enhanced hydrogen evolution reaction and water splitting. Composites Part B: Engineering, 2021, 224, 109229.	5.9	35
108	Characteristics and electrochemical performances of supercapacitors using double-walled carbon nanotube/ſ-MnO2 hybrid material electrodes. Journal of Electroanalytical Chemistry, 2011, 659, 191-195.	1.9	34

#	Article	IF	CITATIONS
109	A general in-situ etching and synchronous heteroatom doping strategy to boost the capacitive performance of commercial carbon fiber cloth. Chemical Engineering Journal, 2018, 335, 638-646.	6.6	34
110	A new catalyst for urea oxidation: NiCo2S4 nanowires modified 3D carbon sponge. Journal of Energy Chemistry, 2020, 50, 195-205.	7.1	34
111	Hollow bimetallic selenide derived from a hierarchical MOF-based Prussian blue analogue for urea electrolysis. Inorganic Chemistry Frontiers, 2021, 8, 2788-2797.	3.0	34
112	Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe2 on biomass-derived carbon substrate for advanced hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 594-603.	5.0	34
113	Multi-walled carbon nanotubes as catalyst promoter for dimethyl ether synthesis from CO2 hydrogenation. Applied Surface Science, 2013, 285, 945-951.	3.1	33
114	Novel self-supported reduced graphene oxide foam-based CoAu electrode: An original anode catalyst for electrooxidation of borohydride in borohydride fuel cell. Carbon, 2019, 152, 77-88.	5.4	33
115	Facile microwave-assisted synthesis of cobalt diselenide/reduced graphene oxide composite for high-performance supercapacitors. Applied Surface Science, 2021, 543, 148811.	3.1	33
116	In situ growth of ZIF67 at the edge of nanosheet transformed into yolk-shell CoSe2 for high efficiency urea electrolysis. Journal of Power Sources, 2021, 491, 229592.	4.0	33
117	Reduced graphene oxide foam supported CoNi nanosheets as an efficient anode catalyst for direct borohydride hydrogen peroxide fuel cell. Applied Surface Science, 2019, 491, 659-669.	3.1	31
118	Ruthenium-nickel-cobalt alloy nanoparticles embedded in hollow carbon microtubes as a bifunctional mosaic catalyst for overall water splitting. Journal of Colloid and Interface Science, 2022, 612, 710-721.	5.0	31
119	Stable and dendrite-free Zn anode with artificial desolvation interface layer toward high-performance Zn-ion capacitor. Journal of Energy Chemistry, 2022, 72, 143-148.	7.1	31
120	Aqueous Calciumâ€lon Battery Based on a Mesoporous Organic Anode and a Manganite Cathode with Long Cycling Performance. ChemSusChem, 2020, 13, 3911-3918.	3.6	30
121	Preparation of multifunctional microchannel-network graphene foams. Journal of Materials Chemistry A, 2014, 2, 16786-16792.	5.2	29
122	Effect of graphene on the performance of nickel foam-based CoNi nanosheet anode catalyzed direct urea-hydrogen peroxide fuel cell. International Journal of Hydrogen Energy, 2020, 45, 10569-10579.	3.8	29
123	A novel electrode of ternary CuNiPd nanoneedles decorated Ni foam and its catalytic activity toward NaBH4 electrooxidation. Electrochimica Acta, 2019, 299, 395-404.	2.6	28
124	Porous \hat{l}^2 -Mo2C nanoparticle clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2020, 563, 104-111.	5.0	28
125	Oxygen vacancies-enriched sub-7 nm cross-linked Bi2.88Fe5O12- nanoparticles anchored MXene for electrochemical energy storage with high volumetric performances. Nano Energy, 2020, 78, 105360.	8.2	27
126	Design and construction of a threeâ€dimensional electrode with biomassâ€derived carbon current collector and waterâ€soluble binder for highâ€sulfurâ€loading lithiumâ€sulfur batteries. , 2020, 2, 635-645.		27

#	Article	IF	CITATIONS
127	Simultaneous hydrogen evolution and ethanol oxidation in alkaline medium via a self-supported bifunctional electrocatalyst of Ni-Fe phosphide/Ni foam. Applied Surface Science, 2021, 561, 150080.	3.1	27
128	Dendrite-free and anti-corrosion Zn metal anode enabled by an artificial layer for high-performance Zn ion capacitor. Chinese Chemical Letters, 2022, 33, 3936-3940.	4.8	27
129	Construction of reduced graphene oxide coupled with CoSe2-MoSe2 heterostructure for enhanced electrocatalytic hydrogen production. Journal of Colloid and Interface Science, 2022, 608, 922-930.	5.0	26
130	Preparation of exfoliated graphite containing manganese oxides with high electrochemical capacitance by microwave irradiation. Carbon, 2009, 47, 3371-3374.	5.4	25
131	Arc-discharge production of high-quality fluorine-modified graphene as anode for Li-ion battery. Chemical Engineering Journal, 2020, 392, 123668.	6.6	25
132	Preparation of organic poly material as anode in aqueous aluminum-ion battery. Journal of Electroanalytical Chemistry, 2020, 861, 113967.	1.9	25
133	N-rich biomass carbon derived from hemp as a full carbon-based potassium ion hybrid capacitor anode. Applied Surface Science, 2021, 553, 149569.	3.1	25
134	Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method. Materials Letters, 2008, 62, 3345-3348.	1.3	24
135	Compressible aligned carbon nanotube/MnO2 as high-rate electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2012, 684, 32-37.	1.9	24
136	Nickel sulfide/graphene/carbon nanotube composites as electrode material for the supercapacitor application in the sea flashing signal system. Journal of Marine Science and Application, 2014, 13, 462-466.	0.7	24
137	Influence of potential range selection on the SnS@C/rGO anodes in potassium ion battery. Applied Surface Science, 2021, 536, 147832.	3.1	24
138	Facile fabrication of F-doped biomass carbon as high-performance anode material for potassium-ion batteries. Electrochimica Acta, 2021, 389, 138799.	2.6	24
139	Ultrathinâ€Walled Bi ₂ S ₃ Nanoroll/MXene Composite toward High Capacity and Fast Lithium Storage. Small, 2022, 18, e2106673.	5.2	24
140	Lithiophilic Cuâ€Li ₂ O matrix on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Energy and Environmental Materials, 2022, 5, 1270-1277.	7.3	23
141	Cable-like polyimide@carbon nanotubes composite as a capable anode for lithium ion batteries. Chemical Engineering Journal, 2022, 446, 137208.	6.6	23
142	Controllable one-pot synthesis of emerging \hat{l}^2 -Cu2Se nanowire freely standing on nickel foam for high electrochemical energy storage performance. Applied Surface Science, 2019, 463, 82-90.	3.1	22
143	Enhanced supercapacitor performance of bimetallic metal selenides via controllable synergistic engineering of composition. Electrochimica Acta, 2021, 370, 137802.	2.6	22
144	Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors. Acta Chimica Sinica, 2018, 76, 107.	0.5	22

#	Article	IF	CITATIONS
145	Polyaniline coated 3D crosslinked carbon nanosheets for high-energy-density supercapacitors. Applied Surface Science, 2019, 493, 506-513.	3.1	21
146	Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors. Applied Surface Science, 2020, 508, 145260.	3.1	21
147	Janus-faced film with dual function of conductivity and pseudo-capacitance for flexible supercapacitors with ultrahigh energy density. Chemical Engineering Journal, 2020, 388, 124197.	6.6	21
148	Rational design of Co-S-P nanosheet arrays as bifunctional electrocatalysts for both ethanol oxidation reaction and hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4498-4506.	3.0	20
149	Sulfur-doped biomass carbon as anode for high temperature potassium ion full cells. Electrochimica Acta, 2021, 374, 137920.	2.6	20
150	Facile synthesis of MnO porous sphere with N-doped carbon coated layer for high performance lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2019, 852, 113515.	1.9	19
151	Iron-doped NiSe2 in-situ grown on graphene as an efficient electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2020, 866, 114134.	1.9	19
152	Bio-derived hierarchically porous heteroatoms doped†carbon as anode for high performance potassium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 871, 114272.	1.9	19
153	3D tremella-like nitrogen-doped carbon encapsulated few-layer MoS2 for lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 594-603.	5.0	19
154	Ultraâ€fast, lowâ€cost, and green regeneration of graphite anode using flash joule heating method. EcoMat, 2022, 4, .	6.8	19
155	High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. Journal of Electroanalytical Chemistry, 2018, 823, 474-481.	1.9	18
156	Rational design of N-doped carbon coated NiNb2O6 hollow nanoparticles as anode for Li-ion capacitor. Applied Surface Science, 2020, 532, 147436.	3.1	18
157	A new perylene-based tetracarboxylate as anode and LiMn2O4 as cathode in aqueous Mg-Li batteries with excellent capacity. Chemical Engineering Journal, 2021, 405, 126783.	6.6	18
158	Highâ€performance allâ€solidâ€state supercapacitor with binderâ€free binary transition metal sulfide array as cathode. International Journal of Energy Research, 2021, 45, 5517-5526.	2.2	18
159	Microspheres composed of multilayer graphene as anode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2011, 653, 45-49.	1.9	17
160	Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm, 2012, 14, 4952.	1.3	17
161	Carbon Coated MoS2 Hierarchical Microspheres Enabling Fast and Durable Potassium Ion Storage. Applied Surface Science, 2021, 564, 150387.	3.1	17
162	Binder-free ultrathin α-MnSe nanosheets for high performance supercapacitor. Journal of Alloys and Compounds, 2021, 885, 161004.	2.8	17

#	Article	IF	Citations
163	Tremella-like manganese dioxide complex (Fe,Ni)3S4 hybrid catalyst for highly efficient oxygen evolution reaction. Journal of Power Sources, 2021, 515, 230627.	4.0	17
164	Nano-phosphorus supported on biomass carbon by gas deposition as negative electrode material for potassium ion batteries. Electrochimica Acta, 2020, 362, 137153.	2.6	16
165	The synthesis of $1~\rm \tilde{A}-1$ magnesium octahedral molecular sieve with controllable size and shape for aqueous magnesium ion battery cathode material. Journal of Electroanalytical Chemistry, 2017, 807, 37-44.	1.9	15
166	Construction of hollow structure cobalt iron selenide polyhedrons for efficient hydrogen evolution reaction. International Journal of Energy Research, 2020, 44, 12045-12055.	2.2	15
167	Synthesis and electrochemical performance of LiVO3 anode materials for full vanadium-based lithium-ion batteries. Journal of Energy Storage, 2021, 35, 102254.	3.9	14
168	Self-supported cobalt–molybdenum oxide nanosheet clusters as efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 21220-21228.	3.8	13
169	Three-demensional Ni Co NiCo2O4/NF as an efficient electrode for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 226-232.	3.8	13
170	Vertical Nickel–Iron layered double hydroxide nanosheets grown on hills-like nickel framework for efficient water oxidation and splitting. International Journal of Hydrogen Energy, 2020, 45, 3986-3994.	3.8	13
171	Polydopamineâ€Modified Reduced Graphene Oxides as a Capable Electrode for Highâ€Performance Supercapacitor. ChemistrySelect, 2019, 4, 2711-2715.	0.7	12
172	Iron molybdenum selenide supported on reduced graphene oxide as an efficient hydrogen electrocatalyst in acidic and alkaline media. Journal of Colloid and Interface Science, 2021, 602, 384-393.	5.0	12
173	Edge sites-driven accelerated kinetics in ultrafine Fe2O3 nanocrystals anchored graphene for enhanced alkali metal ion storage. Chemical Engineering Journal, 2022, 428, 131204.	6.6	12
174	Pd nanoparticles anchored to nano-peony CoMn2O4 as an efficient catalyst for H2O2 electroreduction. Journal of Electroanalytical Chemistry, 2020, 858, 113711.	1.9	11
175	The stable lithium metal cell with two-electrode biomass carbon. Electrochimica Acta, 2020, 356, 136824.	2.6	11
176	Nickel cobalt oxide nanowiresâ€modified hollow carbon tubular bundles for highâ€performance sodiumâ€ion hybrid capacitors. International Journal of Energy Research, 2020, 44, 3883-3892.	2.2	11
177	Hollow hexagonal NiSe–Ni3Se2 anchored onto reduced graphene oxide as efficient electrocatalysts for hydrogen evolution in wide-pH range. International Journal of Hydrogen Energy, 2021, 46, 20524-20533.	3.8	11
178	MXene-modified conductive framework as a universal current collector for dendrite-free lithium and zinc metal anode. Journal of Colloid and Interface Science, 2022, 625, 700-710.	5.0	11
179	Three-demensional porous carbon framework coated with one-demensional nanostructured polyaniline nanowires composite for high-performance supercapacitors. Applied Surface Science, 2019, 474, 147-153.	3.1	10
180	Copper niobate nanowires immobilized on reduced graphene oxide nanosheets as rate capability anode for lithium ion capacitor. Journal of Colloid and Interface Science, 2021, 583, 652-660.	5.0	9

#	Article	IF	Citations
181	VS ₄ Nanorods Anchored Graphene Aerogel as a Conductive Agent-Free Electrode for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 567-574.	2.5	9
182	Effect of chemical modification of graphite nanoplatelets on electrochemical performance of MnO2 electrodes. Journal of Materials Science: Materials in Electronics, 2010, 21, 619-624.	1.1	8
183	Porous Carbon Tubes Constructing Freestanding Flexible Electrodes for Symmetric Potassium-Ion Hybrid Capacitors. ACS Applied Energy Materials, 2021, 4, 13593-13604.	2.5	8
184	One step synthesis of nanoparticles of cobalt in a graphitic shell anchored on graphene sheets. Carbon, 2012, 50, 2356-2358.	5.4	7
185	Silicon Nanoparticles Embedded in Nâ€Doped Fewâ€Layered Graphene: Facile Synthesis and Application as an Effective Anode for Lithium Ion Batteries. ChemPlusChem, 2019, 84, 1519-1524.	1.3	7
186	One-pot synthesis of crossed Fe2O3 nanosheets in-situ grown on Ni foam and the application for H2O2 electrooxidation. Journal of Alloys and Compounds, 2020, 817, 152770.	2.8	7
187	An Environmentâ€Friendly Highâ€Performance Aqueous <scp>Mgâ€Na</scp> Hybridâ€lon Battery Using an Organic Polymer Anode. Energy and Environmental Materials, 2023, 6, .	7. 3	7
188	Super resilience of a compacted mixture of natural graphite and agglomerated carbon nanotubes under cyclic compression. Carbon, 2010, 48, 309-312.	5.4	6
189	Electrocatalytic Activity of MnO2 Supported on Reduced Graphene Oxide Modified Ni Foam for H2O2 Reduction. Acta Chimica Sinica, 2017, 75, 1003.	0.5	6
190	High efficiency N/C foam supported Pd electrode for direct sodium borohydride-hydrogen peroxide fuel cell. Journal of Power Sources, 2022, 541, 231704.	4.0	6
191	Hydrogen-bonded assemblies of trinuclear metal string complexes. Journal of Coordination Chemistry, 2007, 60, 2731-2738.	0.8	5
192	Cobalt Oxide Grown on Biomass Carbon as a Threeâ€Dimensional Selfâ€Supporting Negative Electrode with High Area Specific Capacity. ChemistrySelect, 2020, 5, 8998-9004.	0.7	5
193	Biomassâ€Derived High Nitrogenâ€Rich Carbon Tubes as Anode for Sodium Ion Hybrid Capacitors. ChemElectroChem, 0, , .	1.7	4
194	Selfâ€Templated Synthesis of Cuprous Oxide Nanofiberâ€Assembled Hollow Spheres for Highâ€Performance Electrochemical Energy Storage. ChemElectroChem, 2018, 5, 1724-1731.	1.7	3
195	Built-in electric field induced interfacial effect enables ultrasmall SnS nanoparticles with high-rate lithium/sodium storage. Chemical Engineering Journal, 2022, 446, 137286.	6.6	3
196	Conjugated Polymer/Graphene composite as conductive Agent-Free electrode materials towards High-Performance lithium ion storage. Journal of Colloid and Interface Science, 2022, 626, 710-718.	5.0	3
197	Water-in-salt electrolyte enabled active carbon Mg-OMS-1 capacitor-batteries with high voltage and wide operating temperature. Journal of Energy Storage, 2021, 47, 103560.	3.9	2
198	Reply to comment on "Methods of calculating the volumetric performance of a supercapacitor― Energy Storage Materials, 2016, 4, 156-157.	9.5	1

#	ARTICLE	IF	CITATIONS
199	Work hard, work smartâ€"The quest for excellence drives best practice. American Journal of Health-System Pharmacy, 2008, 65, 111-113.	0.5	0
200	Research on Network Simulation Abstract Technology Based on Simplicity Theory. , 2009, , .		0
201	(Invited) Flexible Mxene/Graphene Films for Ultrafast Supercapacitors. ECS Meeting Abstracts, 2017, , .	0.0	0
202	Back Cover Image, Volume 2, Number 4, December 2020. , 2020, 2, ii.		0