Pierfrancesco Riccardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acoustic plasmons in extrinsic free-standing graphene. New Journal of Physics, 2014, 16, 083003.	2.9	53
2	Plasmon excitation in ion–solid interactions. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 73-83.	1.4	49
3	Angular Studies of Potential Electron Emission in the Interaction of Slow Ions with Al Surfaces. Physical Review Letters, 2000, 84, 378-381.	7.8	39
4	Ion-induced electron emission from MgO by exciton decay into vacuum. Surface Science, 2004, 571, L305-L310.	1.9	30
5	Plasmon properties and hybridization effects in silicene. Physical Review B, 2017, 95, .	3.2	29
6	Calibration of the fine-structure constant of graphene by time-dependent density-functional theory. Physical Review B, 2017, 96, .	3.2	24
7	Kinetic electron emission from Al surfaces by slow ions. Physical Review B, 2007, 75, .	3.2	23
8	Probing graphene interfaces with secondary electrons. Carbon, 2014, 77, 796-802.	10.3	23
9	Local charge exchange of He+ ions at Aluminum surfaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1174-1176.	2.1	21
10	Primary energy dependence of secondary electron emission from graphene adsorbed on Ni(111). Applied Physics Letters, 2012, 101, .	3.3	20
11	Secondary electron emission spectra from clean and cesiated Al surfaces: the role of plasmon decay and data analysis for applications. Journal of Physics Condensed Matter, 2010, 22, 305004.	1.8	18
12	Kinetic electron excitation in the interaction of slowKr+ions with Al surfaces. Physical Review B, 2005, 72, .	3.2	17
13	The excitation of collective electronic modes in Al by slow single charged Ne ions. Surface Science, 2001, 480, L420-L426.	1.9	16
14	Bulk and surface plasmon excitation in the interaction of He+ with Mg surfaces. Nuclear Instruments & Methods in Physics Research B, 2003, 212, 339-345.	1.4	16
15	Electron emission and electronic stopping in the interaction of slow helium ions with aluminum. Physical Review B, 2015, 92, .	3.2	16
16	A comparative study of the plasmonic properties of graphene on lattice-matched and lattice-mismatched Ni surfaces. Surface Science, 2014, 626, 40-43.	1.9	15
17	Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases. Beilstein Journal of Nanotechnology, 2015, 6, 755-766.	2.8	15
18	Many-body shake-up in Auger neutralization of slowAr+ions at Al surfaces. Physical Review A, 2005, 71,	2.5	14

8

1.4

#	Article	IF	CITATIONS
19	Observation of excited states of graphene on Ni(111) by secondary electron spectroscopy. Applied Physics Letters, 2010, 97, .	3.3	14
20	Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 7-10.	1.4	14
21	Electron Emission from Surfaces Induced by Slow Ions and Atoms. Springer Series in Materials Science, 2008, , 43-60.	0.6	13
22	Studies of Electron Emission in the Interaction of Electrons with Graphene on Ni(111) Surface. Nanoscience and Nanotechnology Letters, 2012, 4, 1100-1103.	0.4	13
23	Cluster and Periodic Density Functional Study of Auger Electron Emission from Conducting Carbon Nanotubes. Nanoscience and Nanotechnology Letters, 2012, 4, 1050-1055.	0.4	13
24	Plasmon excitation in Al by keV Ne and Ar ions. Nuclear Instruments & Methods in Physics Research B, 2000, 164-165, 886-890.	1.4	11
25	Plasmon excitation and electron promotion in the interaction of slow Na+ ions with Al surfaces. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 438-442.	1.4	11
26	Auger electron emission from metals induced by low energy ion bombardment: Effect of the band structure and Fermi edge singularity. Surface Science, 2007, 601, 1205-1211.	1.9	11
27	Electron excitation in the interaction of slow ions and electrons with metals and monolayer graphite on Ni(111) surfaces. Vacuum, 2010, 84, 1029-1032.	3.5	11
28	Ar L-shell and metal M-shell Auger electron emission for 14 keV Ar+ ion impact on Ca, Sc, Ti, V, Cr, Fe, Co, Ni, and Cu. Nuclear Instruments & Methods in Physics Research B, 1993, 78, 251-254.	1.4	10
29	Mechanisms for ion-induced plasmon excitation in metals. Nuclear Instruments & Methods in Physics Research B, 1999, 157, 110-115.	1.4	10
30	Double electron excitation in He ions interacting with an aluminum surface. Physical Review A, 2016, 93, .	2.5	10
31	A bridge between research, education and communication. Nature Astronomy, 2020, 4, 2-3.	10.1	10
32	Sub-threshold plasmon excitation in free-electron metals by helium ions. Nuclear Instruments & Methods in Physics Research B, 2003, 209, 68-72.	1.4	9
33	The beauty of outreach. Science, 2016, 354, 674-674.	12.6	9
34	Single versus double <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>2 </mml:mn> <mml:mi>p excitation in neon projectiles scattered from surfaces. Physical Review A, 2021, 104, .</mml:mi></mml:mrow></mml:math 	> 2/. 55ml:m	ro9w>
35	Bulk plasmon excitation in the interaction of Ne+ and Ar+ ions with polycrystalline Al surfaces. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 84-88.	1.4	8

The role of atomic collisions in kinetic electron emission from Al surfaces by slow ions. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 474-477.

#	Article	IF	CITATIONS
37	Wave-packet study of hyperthermal alkali ion neutralization at metal surfaces. Vacuum, 2010, 84, 1038-1042.	3.5	8
38	How to build an educational bridge. Nature Nanotechnology, 2017, 12, 1104-1104.	31.5	8
39	Education and public outreach through vacuum science and technology. Vacuum, 2022, 196, 110737.	3.5	8
40	The role of Al-Auger electrons in kinetic electron emission from Al surfaces by slow Ne+ and Na+ ions. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 618-622.	1.4	7
41	Role of Many Body Shake-Up in Core-Valence-Valence Electron Emission from Single Wall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 9143-9152.	0.9	7
42	Absence of reionization in low-energy Na+ scattering from Al surfaces. Physical Review A, 2018, 97, .	2.5	7
43	Broadening effects in Auger neutralization of 130–430eV Ar+ ions at Al surfaces. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 298-304.	1.4	6
44	Kinetic electron emission in the interactions of slow ions with MgO surfaces. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 455-459.	1.4	6
45	Characterization of carbon nanotubes exposed to Na or bombarded with Na+ at room temperature. Surface Science, 2007, 601, 2832-2835.	1.9	5
46	Fermi edge singularities in ion-induced electron emission from plane metal surfaces. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 438-441.	1.4	5
47	Double resonant neutralization in hyperthermal energy alkali ion scattering at clean metal surfaces. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 578-583.	1.4	5
48	Charge transfer in single and multiple scattering events at metal surfaces: a wavepacket study of the Na ⁺ <i>/</i> Cu(100) system. Journal of Physics Condensed Matter, 2010, 22, 475004.	1.8	5
49	Core–hole effects in fullerene molecules and small-diameter conducting nanotubes: a density functional theory study. Journal of Physics Condensed Matter, 2013, 25, 115301.	1.8	5
50	Collisional excitation in Neon-like projectiles scattered from Al. Solid State Communications, 2021, 340, 114534.	1.9	5
51	Charge and excitation state of Na projectiles scattered from Al surfaces. Radiation Effects and Defects in Solids, 2021, 176, 995-1002.	1.2	5
52	Interactions among school teachers, students and university researchers in workplace experiences using disused instruments of school laboratories. Physics Education, 2022, 57, 045006.	0.5	5
53	Double 2p electron excitation in low-energy Ne+ single scattering from a Si surface: an energy loss study. Surface Science, 1997, 392, L7-L10.	1.9	4
54	Resonant mechanisms for negative ionization of secondary emitted atoms from sputtered metals. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 449-454.	1.4	4

PIERFRANCESCO RICCARDI

#	Article	IF	CITATIONS
55	Angular dependence of secondary electron emission from Cu surfaces induced by electron bombardment. Journal of Physics: Conference Series, 2008, 100, 092013.	0.4	4
56	Wave packet evolution of the valence state of a hyperthermal sodium ion impinging on a copper surface. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 938-942.	1.4	4
57	Negative ionization of the secondary ions of silver and gold sputtered from their elemental surfaces. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 468-473.	1.4	3
58	Kinetic electron emission from metal surfaces by slow Na+ ions. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1721-1724.	1.4	3
59	Secondary Electron Spectra of Graphene on Ni(111) Surface. Journal of Nanoscience and Nanotechnology, 2011, 11, 9256-9259.	0.9	3
60	2p excitation in target atoms in the interaction of slow ions with Al surfaces. Surface Science, 2022, 719, 122025.	1.9	3
61	Excitation of the triplet 2p4(3P)3s2 autoionizing state of Neon by molecular orbital electron promotion at solid surfaces. Chemical Physics Letters, 2022, 798, 139610.	2.6	3
62	Wave packet study of the secondary emission of negatively charged, monoatomic ions from sputtered metals. Nuclear Instruments & Methods in Physics Research B, 2007, 258, 226-229.	1.4	2
63	Auger electron emission in the interaction of slow Na+ ions with Al surfaces. Radiation Physics and Chemistry, 2007, 76, 499-503.	2.8	2
64	Molecular dynamics study of kinetic electron emission induced by slow sodium ions incident on gold surfaces. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 981-984.	1.4	2
65	Many-Body Effects in Auger Electron Emission from Finite-Length Carbon Nanotubes. Nanoscience and Nanotechnology Letters, 2011, 3, 835-840.	0.4	2
66	Electron emission in the interaction of 300eV Na+ ions with Al surfaces. Nuclear Instruments & Methods in Physics Research B, 2007, 258, 96-98.	1.4	1
67	Dynamic core hole screening in small-diameter conducting carbon nanotubes: A cluster density functional study. Thin Solid Films, 2013, 543, 41-47.	1.8	1
68	High Energy Excited States of Graphene Adsorbed on Ni(111). Nanoscience and Nanotechnology Letters, 2013, 5, 1191-1194.	0.4	1
69	Electron energy loss spectrum of solid ethylene. Chemical Physics Letters, 2004, 394, 280-282.	2.6	0
70	Scattering Resonances in bilayer graphene. Journal of Physics: Conference Series, 2018, 987, 012030.	0.4	0
71	How spin-off companies can play a role in science communication. Nature Reviews Physics, 2022, 4, 79-80.	26.6	0