Junqing Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7165169/publications.pdf Version: 2024-02-01

Ιμνοινς Υλν

#	Article	IF	CITATIONS
1	2D-C ₃ N ₄ encapsulated perovskite nanocrystals for efficient photo-assisted thermocatalytic CO ₂ reduction. Chemical Science, 2022, 13, 1335-1341.	3.7	29
2	Metal-doped Mo2C (metal = Fe, Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution. Chinese Journal of Catalysis, 2021, 42, 205-216.	6.9	64
3	Perovskite – A wonder catalyst for solar hydrogen production. Journal of Energy Chemistry, 2021, 57, 325-340.	7.1	39
4	Breaking Platinum Nanoparticles to Singleâ€Atomic Ptâ€C ₄ Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen Conversion. Angewandte Chemie - International Edition, 2021, 60, 2541-2547.	7.2	51
5	Self-assembled CoOOH on TiO2 for enhanced photoelectrochemical water oxidation. Journal of Energy Chemistry, 2021, 60, 512-521.	7.1	20
6	Breaking Platinum Nanoparticles to Singleâ€Atomic Ptâ€C 4 Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen Conversion. Angewandte Chemie, 2021, 133, 2571-2577.	1.6	8
7	High Density and Unit Activity Integrated in Amorphous Catalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000096.	6.9	102
8	Singleâ€Atom Doping and Highâ€Valence State for Synergistic Enhancement of NiO Electrocatalytic Water Oxidation. Small, 2021, 17, e2102448.	5.2	28
9	Enabling Solar Hydrogen Production over Selenium: Surface State Passivation and Cocatalyst Decoration. ACS Sustainable Chemistry and Engineering, 2021, 9, 9923-9931.	3.2	7
10	lrO _{<i>x</i>} @In ₂ O ₃ Heterojunction from Individually Crystallized Oxides for Weakâ€Lightâ€Promoted Electrocatalytic Water Oxidation. Angewandte Chemie, 2021, 133, 26994-27001.	1.6	4
11	IrO _{<i>x</i>} @In ₂ O ₃ Heterojunction from Individually Crystallized Oxides for Weakâ€Lightâ€Promoted Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 26790-26797.	7.2	23
12	Surface Engineering to Reduce the Interfacial Resistance for Enhanced Photocatalytic Water Oxidation. ACS Catalysis, 2020, 10, 8742-8750.	5.5	26
13	Fabrication of nanoporous Ni and NiO via a dealloying strategy for water oxidation catalysis. Journal of Energy Chemistry, 2020, 50, 125-134.	7.1	34
14	Photo-Redeposition Synthesis of Bimetal Pt–Cu Co-catalysts for TiO ₂ Photocatalytic Solar-Fuel Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 6055-6064.	3.2	39
15	Photoassisted Hydrothermal Synthesis of IrOx–TiO ₂ for Enhanced Water Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 17941-17949.	3.2	18
16	Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nature Communications, 2019, 10, 2149.	5.8	363
17	Doubleâ€5ite Ni–W Nanosheet for Best Alkaline HER Performance at High Current Density >500 mA cm ^{â^'2} . Advanced Materials Interfaces, 2019, 6, 1900308.	1.9	24
18	Carbonyl Linked Carbon Nitride Loading Few Layered MoS ₂ for Boosting Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 1389-1398.	3.2	39

Junqing Yan

#	Article	IF	CITATIONS
19	P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor. Applied Surface Science, 2018, 441, 277-284.	3.1	20
20	g ₃ N ₄ Loading Black Phosphorus Quantum Dot for Efficient and Stable Photocatalytic H ₂ Generation under Visible Light. Advanced Functional Materials, 2018, 28, 1800668.	7.8	257
21	Polyoxometalate-Based Metal–Organic Frameworks as Visible-Light-Induced Photocatalysts. Inorganic Chemistry, 2018, 57, 5030-5037.	1.9	130
22	Low-temperature and facile solution-processed two-dimensional TiS ₂ as an effective electron transport layer for UV-stable planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9132-9138.	5.2	78
23	3D–2D–0D Interface Profiling for Record Efficiency Allâ€Inorganic CsPbBrl ₂ Perovskite Solar Cells with Superior Stability. Advanced Energy Materials, 2018, 8, 1703246.	10.2	301
24	Shape―and Trapâ€Controlled Nanocrystals for Giantâ€Performance Improvement of Allâ€Inorganic Perovskite Photodetectors. Particle and Particle Systems Characterization, 2018, 35, 1700363.	1.2	24
25	Stable Highâ€Performance Perovskite Solar Cells via Grain Boundary Passivation. Advanced Materials, 2018, 30, e1706576.	11.1	665
26	Polymer Doping for Highâ€Efficiency Perovskite Solar Cells with Improved Moisture Stability. Advanced Energy Materials, 2018, 8, 1701757.	10.2	293
27	Recent Progress in Singleâ€Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Advanced Science, 2018, 5, 1700471.	5.6	223
28	Air-stable phosphorus-doped molybdenum nitride for enhanced electrocatalytic hydrogen evolution. Communications Chemistry, 2018, 1, .	2.0	36
29	Recent Progress on Black Phosphorusâ€Based Materials for Photocatalytic Water Splitting. Small Methods, 2018, 2, 1800212.	4.6	50
30	Fe ₂ O ₃ /C–C ₃ N ₄ -Based Tight Heterojunction for Boosting Visible-Light-Driven Photocatalytic Water Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 10436-10444.	3.2	61
31	Nitrogen-promoted molybdenum dioxide nanosheets for electrochemical hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 12532-12540.	5.2	34
32	Black Phosphorusâ€Based Compound with Few Layers for Photocatalytic Water Oxidation. ChemCatChem, 2018, 10, 3424-3428.	1.8	14
33	In Situ Synthesis of Fewâ€Layered g ₃ N ₄ with Vertically Aligned MoS ₂ Loading for Boosting Solarâ€toâ€Hydrogen Generation. Small, 2018, 14, 1703003.	5.2	90
34	Synthesis of a nano-sized hybrid C ₃ N ₄ /TiO ₂ sample for enhanced and steady solar energy absorption and utilization. Sustainable Energy and Fuels, 2017, 1, 95-102.	2.5	22
35	P Doped MoO _{3â^'} <i>_x</i> Nanosheets as Efficient and Stable Electrocatalysts for Hydrogen Evolution. Small, 2017, 13, 1700441.	5.2	88
36	Controllable synthesis of Ag-WO3 core-shell nanospheres for light-enhanced gas sensors. Sensors and Actuators B: Chemical, 2017, 251, 583-589.	4.0	35

Junqing Yan

#	Article	IF	CITATIONS
37	Fe(<scp>iii</scp>) doped NiS ₂ nanosheet: a highly efficient and low-cost hydrogen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 10173-10181.	5.2	137
38	Earth-abundant elements doping for robust and stable solar-driven water splitting by FeOOH. Journal of Materials Chemistry A, 2017, 5, 21478-21485.	5.2	54
39	2D WS2 nanosheet supported Pt nanoparticles for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 5472-5477.	3.8	45
40	One-pot hydrothermal fabrication of layered β-Ni(OH) 2 /g-C 3 N 4 nanohybrids for enhanced photocatalytic water splitting. Applied Catalysis B: Environmental, 2016, 194, 74-83.	10.8	102
41	Unraveling the Mechanism of the Zn-Improved Catalytic Activity of Pd-Based Catalysts for Water–Gas Shift Reaction. Journal of Physical Chemistry C, 2016, 120, 20181-20191.	1.5	9
42	One-pot fabrication of NiFe 2 O 4 nanoparticles on α-Ni(OH) 2 nanosheet for enhanced water oxidation. Journal of Power Sources, 2016, 324, 499-508.	4.0	57
43	Ag Nanoparticle-Sensitized WO ₃ Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors. ACS Applied Materials & Interfaces, 2016, 8, 18165-18172.	4.0	90
44	Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2016, 191, 130-137.	10.8	344
45	Nanosheets: Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting (Adv. Mater. 9/2015). Advanced Materials, 2015, 27, 1579-1579.	11.1	8
46	Hydrothermal synthesis and photocatalytic properties of tantalum pentoxide nanorods. Chinese Journal of Catalysis, 2015, 36, 432-438.	6.9	18
47	Ultrafine metal nanoparticles loaded on TiO2 nanorods: Synthesis strategy and photocatalytic activity. Chinese Journal of Catalysis, 2015, 36, 1968-1975.	6.9	11
48	Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6, 5881.	5.8	653
49	Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting. Advanced Materials, 2015, 27, 1580-1586.	11.1	436
50	Facile synthesis of an iron doped rutile TiO ₂ photocatalyst for enhanced visible-light-driven water oxidation. Journal of Materials Chemistry A, 2015, 3, 21434-21438.	5.2	50
51	Synthesis of hierarchical structure Cu2SnSe3 microsphere by a solvothermal method. Materials Letters, 2015, 161, 727-730.	1.3	4
52	Nb2O5/TiO2 heterojunctions: Synthesis strategy and photocatalytic activity. Applied Catalysis B: Environmental, 2014, 152-153, 280-288.	10.8	207
53	Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2. Chemical Physics Letters, 2014, 594, 34-40.	1.2	7
54	Synthetic Design of Gold Nanoparticles on Anatase TiO ₂ {001} for Enhanced Visible Light Harvesting. ACS Sustainable Chemistry and Engineering, 2014, 2, 1940-1946.	3.2	42

#	Article	IF	CITATIONS
55	Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics, 2013, 15, 10978.	1.3	549
56	Synergetic promotion of the photocatalytic activity of TiO2 by gold deposition under UV-visible light irradiation. Chemical Communications, 2013, 49, 11767.	2.2	61