
Huan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7164545/publications.pdf Version: 2024-02-01

ΗΠΑΝ ΥΑΝΟ

#	Article	IF	CITATIONS
1	Orbit Tomography of Binary Supermassive Black Holes with Very Long Baseline Interferometry. Astrophysical Journal, 2022, 927, 93.	4.5	3
2	Mass-gap extreme mass ratio inspirals. Physical Review D, 2022, 105, .	4.7	6
3	Black-hole perturbation theory with post-Newtonian theory: Towards hybrid waveforms for neutron-star binaries. Physical Review D, 2022, 105, .	4.7	1
4	Science potential for stellar-mass black holes as neighbors of Sgr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">A</mml:mi </mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow>Physical Review D, 2022, 105, .</mml:mrow></mml:math 	4.7 > <td>1 row></td>	1 row>
5	Using machine learning to parametrize postmerger signals from binary neutron stars. Physical Review D, 2022, 105, . D, 2022, 105, .	4.7	4
6	Toward observing neutron star collapse with gravitational wave detectors. Physical Review D, 2021, 103, .	4.7	9
7	Relating black hole shadow to quasinormal modes for rotating black holes. Physical Review D, 2021, 103, .	4.7	24
8	Formation rate of extreme mass ratio inspirals in active galactic nuclei. Physical Review D, 2021, 103, .	4.7	43
9	Wet extreme mass ratio inspirals may be more common for spaceborne gravitational wave detection. Physical Review D, 2021, 104, .	4.7	27
10	Mimicking Kerr's multipole moments. Physical Review D, 2021, 104, .	4.7	4
11	First Constraints on Nuclear Coupling of Axionlike Particles from the Binary Neutron Star Gravitational Wave Event GW170817. Physical Review Letters, 2021, 127, 161101.	7.8	21
12	Supercritical Accretion of Stellar-mass Compact Objects in Active Galactic Nuclei. Astrophysical Journal, 2021, 923, 173.	4.5	19
13	Probing Crust Meltdown in Inspiraling Binary Neutron Stars. Physical Review Letters, 2020, 125, 201102.	7.8	16
14	Orbit-induced Spin Precession as a Possible Origin for Periodicity in Periodically Repeating Fast Radio Bursts. Astrophysical Journal Letters, 2020, 893, L31.	8.3	51
15	Quantum correlations of light mediated by gravity. Physical Review A, 2020, 101, .	2.5	34
16	Dynamic signatures of black hole binaries with superradiant clouds. Physical Review D, 2020, 101, .	4.7	43
17	Probing the Growth of Massive Black Holes with Black Hole–Host Galaxy Spin Correlations. Astrophysical Journal, 2020, 901, 163.	4.5	3
18	Exploring the sensitivity of gravitational wave detectors to neutron star physics. Physical Review D, 2019, 99, .	4.7	78

Huan Yang

#	Article	IF	CITATIONS
19	Black hole discharge: Very-high-energy gamma rays from black hole-neutron star mergers. Physical Review D, 2019, 100, .	4.7	13
20	Tidal Resonance in Extreme Mass-Ratio Inspirals. Physical Review Letters, 2019, 123, 101103.	7.8	56
21	Gravitational floating orbits around hairy black holes. Physical Review D, 2019, 99, .	4.7	41
22	Inspiralling eccentric binary neutron stars: Orbital motion and tidal resonance. Physical Review D, 2019, 100, .	4.7	19
23	Relativistic mean motion resonance. Physical Review D, 2019, 100, .	4.7	14
24	Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown. General Relativity and Gravitation, 2018, 50, 1.	2.0	216
25	Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking. Physical Review D, 2018, 97, .	4.7	59
26	Can We Distinguish Low-mass Black Holes in Neutron Star Binaries?. Astrophysical Journal, 2018, 856, 110.	4.5	50
27	Physics of Pair Producing Gaps in Black Hole Magnetospheres. Astrophysical Journal Letters, 2018, 863, L31.	8.3	31
28	Towards the design of gravitational-wave detectors for probing neutron-star physics. Physical Review D, 2018, 98, .	4.7	42
29	Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries. Physical Review D, 2018, 97, .	4.7	33
30	Evolution of highly eccentric binary neutron stars including tidal effects. Physical Review D, 2018, 98,	4.7	35
31	Magnetosphere of a spinning black hole and the role of the current sheet. Physical Review D, 2018, 98, .	4.7	11
32	Testing Gravitational Memory Generation with Compact Binary Mergers. Physical Review Letters, 2018, 121, 071102.	7.8	24
33	Global Crustal Dynamics of Magnetars in Relation to Their Bright X-Ray Outbursts. Astrophysical Journal, 2017, 841, 54.	4.5	43
34	Black Hole Spectroscopy with Coherent Mode Stacking. Physical Review Letters, 2017, 118, 161101.	7.8	81
35	Testing gravity with pulsar scintillation measurements. Physical Review D, 2017, 95, .	4.7	4
36	General relativistic dynamics of an extreme mass-ratio binary interacting with an external body. Physical Review D, 2017, 96, .	4.7	24

Huan Yang

#	Article	IF	CITATIONS
37	PLASMA-WAVE GENERATION IN A DYNAMIC SPACETIME. Astrophysical Journal, 2016, 817, 183.	4.5	8
38	Coupled oscillator model for nonlinear gravitational perturbations. Physical Review D, 2015, 91, .	4.7	13
39	Magnetosphere of a Kerr black hole immersed in magnetized plasma and its perturbative mode structure. Physical Review D, 2015, 91, .	4.7	18
40	Turbulent Black Holes. Physical Review Letters, 2015, 114, 081101.	7.8	56
41	Quasinormal modes of weakly charged Kerr-Newman spacetimes. Physical Review D, 2015, 91, .	4.7	43
42	Towards an understanding of the force-free magnetosphere of rapidly spinning black holes. Physical Review D, 2014, 90, .	4.7	21
43	Stability of force-free magnetospheres. Physical Review D, 2014, 90, .	4.7	18
44	Scalar Green function of the Kerr spacetime. Physical Review D, 2014, 89, .	4.7	17
45	Wavefront twisting by rotating black holes: Orbital angular momentum generation and phase coherent detection. Physical Review D, 2014, 90, .	4.7	8
46	Quantum limits of interferometer topologies for gravitational radiation detection. Classical and Quantum Gravity, 2014, 31, 165010.	4.0	31
47	Brownian thermal noise in multilayer coated mirrors. Physical Review D, 2013, 87, .	4.7	56
48	Macroscopic Quantum Mechanics in a Classical Spacetime. Physical Review Letters, 2013, 110, 170401.	7.8	100
49	Quasinormal modes of nearly extremal Kerr spacetimes: Spectrum bifurcation and power-law ringdown. Physical Review D, 2013, 88, .	4.7	92
50	Branching of quasinormal modes for nearly extremal Kerr black holes. Physical Review D, 2013, 87, .	4.7	66
51	Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation. Physical Review D, 2012, 86, .	4.7	137
52	Quantum back-action in measurements of zero-point mechanical oscillations. Physical Review A, 2012, 86, .	2.5	56