
Alexander L Kalamkarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7164195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic micromechanical model for smart composite and reinforced shells. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	1.6	2
2	A Novel Micromechanical Model Based on the Rule of Mixtures to Estimate Effective Elastic Properties of Circular Fiber Composites. Applied Composite Materials, 2022, 29, 1715-1731.	2.5	6
3	Micromechanical analysis of thermoelastic and magnetoelectric composite and reinforced shells. Composite Structures, 2021, 259, 113426.	5.8	3
4	Trace theory applied to composite analysis: A comparison with micromechanical models. Composites Communications, 2021, 25, 100715.	6.3	16
5	Dilatation gradient elasticity theory. European Journal of Mechanics, A/Solids, 2021, 88, 104258.	3.7	15
6	Asymptotic homogenization of magnetoelectric reinforced shells: Effective coefficients and influence of shell curvature. International Journal of Solids and Structures, 2021, 228, 111105.	2.7	3
7	Multiscale approach to predict strength of notched composite plates. Composite Structures, 2020, 253, 112827.	5.8	16
8	Micromechanical analysis of quantum dot-embedded smart nanocomposite materials. Composites Part C: Open Access, 2020, 3, 100062.	3.2	1
9	Micromechanical analysis of transversal strength of composite laminae. Composite Structures, 2020, 250, 112546.	5.8	24
10	Micromechanical analysis of longitudinal and shear strength of composite laminae. Journal of Composite Materials, 2020, 54, 4853-4873.	2.4	16
11	Comparative analysis of micromechanical models for the elastic composite laminae. Composites Part B: Engineering, 2019, 174, 106961.	12.0	53
12	Micromechanical analysis of piezo-magneto-thermo-elastic T-ribbed and Î-ribbed plates. Mechanics of Advanced Materials and Structures, 2018, 25, 657-668.	2.6	7
13	Continuum micro-dilatation modeling of auxetic metamaterials. International Journal of Solids and Structures, 2018, 132-133, 188-200.	2.7	23
14	Analytical Solution of the Stability Problem for the Truncated Hemispherical Shell under Tensile Loading. Mathematical Problems in Engineering, 2018, 2018, 1-4.	1.1	3
15	Micromechanical modeling of thin composite and reinforced magnetoelectric plates – Effective electrical, magnetic, thermal and product properties. Composites Part B: Engineering, 2017, 113, 243-269.	12.0	12
16	Micromechanical modeling of thin composite and reinforced magnetoelectric plates – Effective elastic, piezoelectric and piezomagnetic coefficients. Composite Structures, 2017, 172, 102-118.	5.8	9
17	Modeling of anisotropic magneto-piezoelastic materials. , 2016, , .		1
18	Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure. Journal of Multiscale Modeling, 2016, 07, 1650006.	1.1	9

#	Article	IF	CITATIONS
19	Analysis of Magneto-Piezoelastic Anisotropic Materials. Metals, 2015, 5, 863-880.	2.3	2
20	Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates: Part II – Applications. Curved and Layered Structures, 2014, 1, .	1.3	6
21	Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates: Part I – Model Development. Curved and Layered Structures, 2014, 1, .	1.3	4
22	Transversely isotropic constitutive properties modeling of tubular sandwich composite structures. Journal of Thermoplastic Composite Materials, 2014, 27, 1349-1369.	4.2	1
23	Three-phase model for a composite material with cylindrical circular inclusions. Part I: Application of the boundary shape perturbation method. International Journal of Engineering Science, 2014, 78, 154-177.	5.0	5
24	Three-phase model for a composite material with cylindrical circular inclusions. Part II: Application of Padé approximants. International Journal of Engineering Science, 2014, 78, 178-191.	5.0	5
25	Analytical expressions for effective thermal conductivity of composite materials with inclusions of square cross-section. Composites Part B: Engineering, 2013, 50, 44-53.	12.0	11
26	Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part II – Applications. European Journal of Mechanics, A/Solids, 2013, 39, 313-327.	3.7	39
27	Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part I – Theory. European Journal of Mechanics, A/Solids, 2013, 39, 298-312.	3.7	40
28	Effective Properties of Composite Materials, Reinforced Structures and Smart Composites: Asymptotic Homogenization Approach. Solid Mechanics and Its Applications, 2013, , 283-363.	0.2	5
29	Vibration localization in one-dimensional linear and nonlinear lattices: discrete and continuum models. Nonlinear Dynamics, 2013, 72, 37-48.	5.2	18
30	ASYMPTOTIC HOMOGENIZATION METHOD AND MICROMECHANICAL MODELS FOR COMPOSITE MATERIALS AND THIN-WALLED COMPOSITE STRUCTURES. Computational and Experimental Methods in Structures, 2013, , 1-60.	0.3	8
31	Micromechanical modeling and effective properties of the smart grid-reinforced composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2012, 34, 343-351.	1.6	12
32	Asymptotic analysis of perforated shallow shells. International Journal of Engineering Science, 2012, 53, 1-18.	5.0	8
33	Dynamic modeling and determination of effective properties of smart composite plates with rapidly varying thickness. International Journal of Engineering Science, 2012, 56, 63-85.	5.0	14
34	Buckling of fibers in fiber-reinforced composites. Composites Part B: Engineering, 2012, 43, 2058-2062.	12.0	22
35	Asymptotic analysis of perforated plates and membranes. Part 2: Static and dynamic problems for large holes. International Journal of Solids and Structures, 2012, 49, 311-317.	2.7	8
36	Asymptotic analysis of perforated plates and membranes. Part 1: Static problems for small holes. International Journal of Solids and Structures, 2012, 49, 298-310.	2.7	8

Alexander L Kalamkarov

#	Article	IF	CITATIONS
37	Analytical and numerical analysis of 3D grid-reinforced orthotropic composite structures. International Journal of Engineering Science, 2011, 49, 589-605.	5.0	20
38	A three-dimensional constitutive model for shape memory alloys. Archive of Applied Mechanics, 2010, 80, 1163-1175.	2.2	17
39	Stress Concentration Factors and Weight Functions in Thin Notched Structures of Equibiaxial Anisotropic Materials. Advanced Engineering Materials, 2010, 12, 633-636.	3.5	Ο
40	Asymptotic homogenization modeling of smart composite generally orthotropic grid-reinforced shells: Part II– Applications. European Journal of Mechanics, A/Solids, 2010, 29, 541-556.	3.7	22
41	Asymptotic homogenization modeling of smart composite generally orthotropic grid-reinforced shells: Part I – theory. European Journal of Mechanics, A/Solids, 2010, 29, 530-540.	3.7	31
42	Analysis of the effective conductivity of composite materials in the entire range of volume fractions of inclusions up to the percolation threshold. Composites Part B: Engineering, 2010, 41, 503-507.	12.0	26
43	Asymptotic homogenization model for 3D grid-reinforced composite structures with generally orthotropic reinforcements. Composite Structures, 2009, 89, 186-196.	5.8	31
44	Asymptotic Homogenization of Composite Materials and Structures. Applied Mechanics Reviews, 2009, 62, .	10.1	190
45	Micromechanical Thermoelastic Model for Sandwich Composite Shells made of Generally Orthotropic Materials. Journal of Sandwich Structures and Materials, 2009, 11, 27-56.	3.5	10
46	Micromechanical analysis of grid-reinforced thin composite generally orthotropic shells. Composites Part B: Engineering, 2008, 39, 627-644.	12.0	23
47	Micromechanical analysis of fiber-reinforced composites on account of influence of fiber coatings. Composites Part B: Engineering, 2008, 39, 874-881.	12.0	28
48	Micromechanical analysis of effective piezoelastic properties of smart composite sandwich shells made of generally orthotropic materials. Smart Materials and Structures, 2007, 16, 866-883.	3.5	18
49	Effective elastic characteristics of honeycomb sandwich composite shells made of generally orthotropic materials. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1533-1546.	7.6	35
50	Asymptotic justification of the three-phase composite model. Composite Structures, 2007, 77, 395-404.	5.8	18
51	General micromechanical modeling of smart composite shells with application to smart honeycomb sandwich structures. Composite Structures, 2007, 79, 18-33.	5.8	27
52	Asymptotic homogenization modeling of thin composite network structures. Composite Structures, 2007, 79, 432-444.	5.8	32
53	General theory of continuous media with conserved dislocations. International Journal of Solids and Structures, 2007, 44, 7468-7485.	2.7	17
54	General theory of defects in continuous media. International Journal of Solids and Structures, 2006, 43, 91-111.	2.7	9

#	Article	IF	CITATIONS
55	Analytical and numerical techniques to predict carbon nanotubes properties. International Journal of Solids and Structures, 2006, 43, 6832-6854.	2.7	263
56	Modeling of the thermopiezoelastic behavior of prismatic smart composite structures made of orthotropic materials. Composites Part B: Engineering, 2006, 37, 569-582.	12.0	13
57	Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components. Smart Structures and Systems, 2005, 1, 369-384.	1.9	2
58	Modeling of smart composites on account of actuation, thermal conductivity and hygroscopic absorption. Composites Part B: Engineering, 2002, 33, 141-152.	12.0	31
59	A new asymptotic model of flexible composite shells of a regular structure. International Journal of Engineering Science, 2002, 40, 333-343.	5.0	8
60	A new asymptotic model for a composite piezoelastic plate. International Journal of Solids and Structures, 2001, 38, 6027-6044.	2.7	37
61	Analysis of large deflection equilibrium states of composite shells of revolution. Part 1. General model and singular perturbation analysis. International Journal of Solids and Structures, 2001, 38, 8961-8974.	2.7	27
62	Analysis of large deflection equilibrium states of composite shells of revolution. Part 2. Applications and numerical results. International Journal of Solids and Structures, 2001, 38, 8975-8987.	2.7	18
63	Reliability assessment of pultruded FRP reinforcements with embedded fiber optic sensors. Composite Structures, 2000, 50, 69-78.	5.8	31
64	The mechanical performance of pultruded composite rods with embedded fiber-optic sensors. Composites Science and Technology, 2000, 60, 1161-1169.	7.8	22
65	On the processing and evaluation of pultruded smart composites. Composites Part B: Engineering, 1999, 30, 753-763.	12.0	23
66	Experimental and analytical studies of smart composite reinforcement. Composites Part B: Engineering, 1998, 29, 21-30.	12.0	21
67	A new model for the multiphase fiber–matrix composite materials. Composites Part B: Engineering, 1998, 29, 643-653.	12.0	36
68	<title>Smart pultruded composite reinforcements incorporating fiber optic sensors</title> . , 1998, , .		10
69	Processing and evaluation of smart composite reinforcement. , 1997, , .		2