J Paul Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7164072/j-paul-chen-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

11,258 56 141 104 h-index g-index citations papers 6.91 8.9 12,738 147 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
141	Decontamination of arsenite by a nano-sized lanthanum peroxide composite through a simultaneous treatment process combined with spontaneously catalytic oxidation and adsorption reactions. <i>Chemical Engineering Journal</i> , 2022 , 435, 135082	14.7	2
140	Cost-effective phosphorus removal from aqueous solution by a chitosan/lanthanum hydrogel bead: Material development, characterization of uptake process and investigation of mechanisms. <i>Chemosphere</i> , 2022 , 286, 131458	8.4	1
139	An optimized CaO-functionalized alginate bead for simultaneous and efficient removal of phosphorous and harmful cyanobacteria. <i>Science of the Total Environment</i> , 2022 , 806, 150382	10.2	3
138	Amorphous Metal-Organic Framework UiO-66-NO2 for Removal of Oxyanion Pollutants: Towards Improved Performance and Effective Reusability. <i>Separation and Purification Technology</i> , 2022 , 121014	8.3	O
137	Leaching of organic matters and formation of disinfection by-product as a result of presence of microplastics in natural freshwaters <i>Chemosphere</i> , 2022 , 134300	8.4	1
136	A new carbon nanotube modified by nano CaO2 for removal of chromate and phosphate from aqueous solutions. <i>Chemical Engineering Journal</i> , 2022 , 136845	14.7	О
135	Gadolinium(III) terephthalate metal-organic framework for rapid sequestration of phosphate in 10 min: Material development and adsorption study <i>Chemosphere</i> , 2021 , 133498	8.4	2
134	Adsorption of organic and inorganic arsenic from aqueous solution: Optimization, characterization and performance of Fe-Mn-Zr ternary magnetic sorbent. <i>Chemosphere</i> , 2021 , 132634	8.4	1
133	Modification of polyvinylidene fluoride membrane by silver nanoparticles-graphene oxide hybrid nanosheet for effective membrane biofouling mitigation. <i>Chemosphere</i> , 2021 , 268, 129187	8.4	18
132	Ultrafiltration membrane fouling by microplastics with raw water: Behaviors and alleviation methods. <i>Chemical Engineering Journal</i> , 2021 , 410, 128174	14.7	10
131	Kinetics and Mechanism Investigation of Selective Arsenite Oxidation by Reactive Iodine Species in Hydrogen Peroxide and Iodide (H2O2/IIISystem. ACS ES&T Water, 2021 , 1, 1515-1523		2
130	Great enhancement in phosphate uptake onto lanthanum carbonate grafted microfibrous composite under a low-voltage electrostatic field. <i>Chemosphere</i> , 2021 , 264, 128378	8.4	12
129	Simultaneous oxidation and removal of arsenite by Fe(III)/CaO Fenton-like technology. <i>Water Research</i> , 2021 , 201, 117312	12.5	13
128	Microcystis aeruginosa removal by peroxides of hydrogen peroxide, peroxymonosulfate and peroxydisulfate without additional activators. <i>Water Research</i> , 2021 , 201, 117263	12.5	10
127	Incorporation of lanthanum particles to polyethersulfone ultrafiltration membrane for specific phosphorus uptake: Method comparison and performance assessment. <i>Journal of Colloid and Interface Science</i> , 2021 , 601, 242-253	9.3	2
126	Improvement of Ultrafiltration for Treatment of Phosphorus-Containing Water by a Lanthanum-Modified Aminated Polyacrylonitrile Membrane. <i>ACS Omega</i> , 2020 , 5, 7170-7181	3.9	17
125	An innovative lanthanum carbonate grafted microfibrous composite for phosphate adsorption in wastewater. <i>Journal of Hazardous Materials</i> , 2020 , 392, 121952	12.8	40

(2017-2020)

124	Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance. <i>Chemical Engineering Journal</i> , 2020 , 380, 122153	14.7	62
123	Electrospun spongy zero-valent iron as excellent electro-Fenton catalyst for enhanced sulfathiazole removal by a combination of adsorption and electro-catalytic oxidation. <i>Journal of Hazardous Materials</i> , 2019 , 371, 576-585	12.8	34
122	A new adsorbent of gadolinium-1,4-benzenedicarboxylate composite for better phosphorous removal in aqueous solutions. <i>Journal of Colloid and Interface Science</i> , 2019 , 543, 343-351	9.3	11
121	Iron catalyzed degradation of an aromatic polyamide reverse osmosis membrane by free chlorine. Journal of Membrane Science, 2019 , 577, 205-211	9.6	12
120	Development and characterization of yttrium-ferric binary composite for treatment of highly concentrated arsenate wastewater. <i>Journal of Hazardous Materials</i> , 2019 , 361, 348-356	12.8	25
119	Quantitative assessment of the iron-catalyzed degradation of a polyamide nanofiltration membrane by hydrogen peroxide. <i>Journal of Membrane Science</i> , 2019 , 588, 117154	9.6	10
118	Yttrium-doped iron oxide magnetic adsorbent for enhancement in arsenic removal and ease in separation after applications. <i>Journal of Colloid and Interface Science</i> , 2018 , 521, 252-260	9.3	34
117	Degradation of organic compounds during the corrosion of ZVI by hydrogen peroxide at neutral pH: Kinetics, mechanisms and effect of corrosion promoting and inhibiting ions. <i>Water Research</i> , 2018 , 134, 44-53	12.5	46
116	Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. <i>Water Research</i> , 2018 , 137, 362-374	12.5	687
115	Catalytic effect of iron on the tolerance of thin-film composite polyamide reverse osmosis membranes to hydrogen peroxide. <i>Journal of Membrane Science</i> , 2018 , 548, 91-98	9.6	12
114	Treatment of methylene blue containing wastewater by a cost-effective micro-scale biochar/polysulfone mixed matrix hollow fiber membrane: Performance and mechanism studies. Journal of Colloid and Interface Science, 2018, 512, 190-197	9.3	28
113	An innovative yttrium nanoparticles/PVA modified PSF membrane aiming at decontamination of arsenate. <i>Journal of Colloid and Interface Science</i> , 2018 , 530, 658-666	9.3	15
112	Rare-earth metal based adsorbents for effective removal of arsenic from water: A critical review. <i>Critical Reviews in Environmental Science and Technology</i> , 2018 , 48, 1127-1164	11.1	35
111	Effect of CNT content on physicochemical properties and performance of CNT composite polysulfone membranes. <i>Chemical Engineering Research and Design</i> , 2017 , 121, 92-98	5.5	21
110	Effects of monochloramine and hydrogen peroxide on the bacterial community shifts in biologically treated wastewater. <i>Chemosphere</i> , 2017 , 189, 399-406	8.4	14
109	Development of a novel biochar/PSF mixed matrix membrane and study of key parameters in treatment of copper and lead contaminated water. <i>Chemosphere</i> , 2017 , 186, 1033-1045	8.4	26
108	The tolerance of a thin-film composite polyamide reverse osmosis membrane to hydrogen peroxide exposure. <i>Journal of Membrane Science</i> , 2017 , 524, 529-536	9.6	28
107	Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms. <i>Chemical Engineering Journal</i> , 2017 , 315, 630-638	14.7	68

106	Applications of water stable metal-organic frameworks. <i>Chemical Society Reviews</i> , 2016 , 45, 5107-34	58.5	737
105	A metal-organic framework/ lumina composite with a novel geometry for enhanced adsorptive separation. <i>Chemical Communications</i> , 2016 , 52, 8869-72	5.8	23
104	Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption. <i>Journal of Colloid and Interface Science</i> , 2016 , 474, 216-22	9.3	24
103	Fabrication and testing of zirconium-based nanoparticle-doped activated carbon fiber for enhanced arsenic removal in water. <i>RSC Advances</i> , 2016 , 6, 27020-27030	3.7	28
102	Application of Zirconium/PVA Modified Flat-Sheet PVDF Membrane for the Removal of Phosphate from Aqueous Solution. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 6835-6844	3.9	15
101	Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects. <i>Chemosphere</i> , 2016 , 155, 630-639	8.4	25
100	Zirconium/PVA modified flat-sheet PVDF membrane as a cost-effective adsorptive and filtration material: A case study on decontamination of organic arsenic in aqueous solutions. <i>Journal of Colloid and Interface Science</i> , 2016 , 477, 191-200	9.3	20
99	Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA. <i>Water Research</i> , 2016 , 101, 564-573	12.5	88
98	Key factors for optimum performance in phosphate removal from contaminated water by a Fe-Mg-La tri-metal composite sorbent. <i>Journal of Colloid and Interface Science</i> , 2015 , 445, 303-311	9.3	76
97	A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. <i>Water Research</i> , 2015 , 80, 306-24	12.5	466
96	Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane Implications for antibiotics recovery. <i>Separation and Purification Technology</i> , 2015 , 153, 76-83	8.3	59
95	Introduction and demonstration of a novel Pb(II)-imprinted polymeric membrane with high selectivity and reusability for treatment of lead contaminated water. <i>Journal of Colloid and Interface Science</i> , 2015 , 439, 162-9	9.3	46
94	Modification of carbon derived from Sargassum sp. by lanthanum for enhanced adsorption of fluoride. <i>Journal of Colloid and Interface Science</i> , 2015 , 441, 113-20	9.3	66
93	Adsorption of fluoride by FeMgIIa triple-metal composite: Adsorbent preparation, illustration of performance and study of mechanisms. <i>Chemical Engineering Journal</i> , 2015 , 262, 839-846	14.7	104
92	Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. <i>Scientific Reports</i> , 2015 , 5, 16613	4.9	225
91	Introduction of an YttriumManganese Binary Composite That Has Extremely High Adsorption Capacity for Arsenate Uptake in Different Water Conditions. <i>Industrial & Different Water Conditions</i> . <i>Industrial & Different Conditions</i> .	3.9	35
90	A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. <i>Bioresource Technology</i> , 2014 , 160, 67-78	11	428
89	A zirconium-based nanoparticle: essential factors for sustainable application in treatment of fluoride containing water. <i>Journal of Colloid and Interface Science</i> , 2014 , 416, 227-34	9.3	39

(2011-2014)

88	Fabrication and performance of a MnIIa metal composite for remarkable decontamination of fluoride. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8086	13	29
87	Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water. <i>Water Research</i> , 2014 , 56, 88-97	12.5	83
86	A novel Zr-based nanoparticle-embedded PSF blend hollow fiber membrane for treatment of arsenate contaminated water: Material development, adsorption and filtration studies, and characterization. <i>Journal of Membrane Science</i> , 2014 , 452, 433-445	9.6	74
85	Cu(II)-Imprinted Poly(vinyl alcohol)/Poly(acrylic acid) Membrane for Greater Enhancement in Sequestration of Copper Ion in the Presence of Competitive Heavy Metal Ions: Material Development, Process Demonstration, and Study of Mechanisms. <i>Industrial & Description</i> 10, 2000 10, 200	3.9	39
84	A novel route to the engineering of zirconium immobilized nano-scale carbon for arsenate removal from water. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8636	13	66
83	Simultaneous removal of arsenate and arsenite by a nanostructured zirconium-manganese binary hydrous oxide: behavior and mechanism. <i>Journal of Colloid and Interface Science</i> , 2013 , 397, 137-43	9.3	54
82	Removal of methylated arsenic using a nanostructured zirconia-based sorbent: process performance and adsorption chemistry. <i>Journal of Colloid and Interface Science</i> , 2012 , 367, 362-9	9.3	27
81	A low-energy intensive electrochemical system for the eradication of Escherichia coli from ballast water: process development, disinfection chemistry, and kinetics modeling. <i>Marine Pollution Bulletin</i> , 2012 , 64, 1238-45	6.7	21
80	Combination of electroreduction with biosorption for enhancement for removal of hexavalent chromium. <i>Journal of Colloid and Interface Science</i> , 2012 , 385, 147-53	9.3	24
79	Electrochemical Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. <i>Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Rhodamine 6G: Behaviors and Mechanism. Industrial & Decoloration of Synthetic Rhodamine 6G: Behaviors and Mechanism of Synthetic Rhodami</i>	3.9	35
78	Removal of arsenite from aqueous solution by a zirconia nanoparticle. <i>Chemical Engineering Journal</i> , 2012 , 188, 15-22	14.7	79
77	Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution. <i>Langmuir</i> , 2011 , 27, 6018-25	4	56
76	Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. <i>Water Research</i> , 2011 , 45, 145-54	12.5	129
75	Uptake of methylated arsenic by a polymeric adsorbent: process performance and adsorption chemistry. <i>Water Research</i> , 2011 , 45, 2290-6	12.5	33
74	Design and fabrication of an innovative and environmental friendly adsorbent for boron removal. <i>Water Research</i> , 2011 , 45, 2297-305	12.5	82
73	Electrochemical disinfection for ballast water management: technology development and risk assessment. <i>Marine Pollution Bulletin</i> , 2011 , 63, 119-23	6.7	38
72	Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption. <i>Bioresource Technology</i> , 2011 , 102, 2821-8	11	74
71	Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane. <i>Journal of Membrane Science</i> , 2011 , 374, 1-11	9.6	128

70	A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: Synthesis, characterization and performance. <i>Journal of Colloid and Interface Science</i> , 2011 , 354, 785-92	9.3	99
69	Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UV-Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta. <i>Journal of Colloid and Interface Science</i> , 2011 , 354, 261-7	9.3	56
68	Enhanced adsorption of arsenate onto a natural polymer-based sorbent by surface atom transfer radical polymerization. <i>Journal of Colloid and Interface Science</i> , 2011 , 356, 234-9	9.3	37
67	Characterization of hexavalent chromium interaction with Sargassum by X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and quantum chemistry calculation. <i>Journal of Colloid and Interface Science</i> , 2011 , 356, 741-8	9.3	31
66	Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. <i>Journal of Colloid and Interface Science</i> , 2011 , 358, 230-7	9.3	195
65	An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber. <i>Journal of Colloid and Interface Science</i> , 2010 , 343, 232-8	9.3	122
64	Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. <i>Journal of Colloid and Interface Science</i> , 2010 , 344, 117-25	9.3	191
63	Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal. <i>Carbon</i> , 2010 , 48, 60-67	10.4	142
62	Effect of Hexavalent Chromium on Performance of Membrane Bioreactor in Wastewater Treatment. <i>Journal of Environmental Engineering, ASCE</i> , 2009 , 135, 796-805	2	5
61	Removal of copper by calcium alginate encapsulated magnetic sorbent. <i>Chemical Engineering Journal</i> , 2009 , 152, 509-513	14.7	65
60	Uptake of arsenate by an alginate-encapsulated magnetic sorbent: process performance and characterization of adsorption chemistry. <i>Journal of Colloid and Interface Science</i> , 2009 , 333, 33-9	9.3	34
59	Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules. <i>Journal of Colloid and Interface Science</i> , 2009 , 335, 11-7	9.3	110
58	Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal. Journal of Colloid and Interface Science, 2009 , 338, 22-9	9.3	73
57	Electrochemical Removal of Rhodamine 6G by Using RuO2 Coated Ti DSA. <i>Industrial & amp;</i> Engineering Chemistry Research, 2009 , 48, 7466-7473	3.9	39
56	Organic arsenic adsorption onto a magnetic sorbent. <i>Langmuir</i> , 2009 , 25, 4973-8	4	115
55	Treatment of black liquor of paper-making by combined process of acid-producing white rot fungus – anaerobic hydrolysis – contact oxidation – internal electrolysis. <i>International Journal of Environment and Pollution</i> , 2009 , 38, 56	0.7	
54	Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. <i>Environmental Science & Environmental Science & Envir</i>	10.3	253
53	Dendrimer hydrazides as multivalent transient inter-cellular linkers. <i>Biomaterials</i> , 2008 , 29, 3693-3702	15.6	20

(2005-2008)

52	Biosorption of copper by immobilized marine algal biomass. <i>Chemical Engineering Journal</i> , 2008 , 136, 156-163	14.7	50
51	Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. <i>Bioresource Technology</i> , 2008 , 99, 297-307	11	165
50	Photocatalytic Treatment of Wastewater Contaminated with Organic Waste and Copper Ions from the Semiconductor Industry. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 6566-6571	3.9	23
49	Synthesis of an innovative calcium-alginate magnetic sorbent for removal of multiple contaminants. <i>Applied Surface Science</i> , 2007 , 253, 5772-5775	6.7	62
48	Proton interaction in phosphate adsorption onto goethite. <i>Journal of Colloid and Interface Science</i> , 2007 , 308, 40-8	9.3	46
47	Determination of lead biosorption properties by experimental and modeling simulation study. <i>Chemical Engineering Journal</i> , 2007 , 131, 209-215	14.7	38
46	Emerging Biosorption, Adsorption, Ion Exchange, and Membrane Technologies 2007 , 367-390		2
45	Biosorption of Heavy Metal Ions (Pb, Cu, and Cd) from Aqueous Solutions by the Marine Alga Sargassumsp. in Single- and Multiple-Metal Systems. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 2438-2444	3.9	123
44	Modification of Activated Carbon by Polyaniline for Enhanced Adsorption of Aqueous Arsenate. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 2133-2140	3.9	91
43	Ultraviolet Radiation for Disinfection 2006 , 317-366		7
42	Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. <i>Langmuir</i> , 2006 , 22, 8906-14	4	130
41	Explosive Waste Treatment 2006 , 429-440		
40	Membrane Filtration 2006 , 203-259		12
39	Scalable encapsulation of hepatocytes by electrostatic spraying. <i>Journal of Biotechnology</i> , 2005 , 117, 99-109	3.7	37
38	Chemical Modification of Sargassum sp. for Prevention of Organic Leaching and Enhancement of Uptake during Metal Biosorption. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 9931-9942	3.9	141
37	Flow Equalization and Neutralization 2005 , 21-45		10
36	Recovery of precious metals by an electrochemical deposition method. <i>Chemosphere</i> , 2005 , 60, 1384-92	28.4	73
35	Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 15256-63	3.4	182

34	Biosorption Performance of Two Brown Marine Algae for Removal of Chromium and Cadmium. Journal of Dispersion Science and Technology, 2005 , 25, 679-686	1.5	39
33	Electrolysis 2005 , 359-378		5
32	Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. <i>Journal of Colloid and Interface Science</i> , 2004 , 275, 131-41	9.3	818
31	Simultaneous adsorption of copper ions and humic acid onto an activated carbon. <i>Journal of Colloid and Interface Science</i> , 2004 , 280, 334-42	9.3	106
30	Modeling Investigation of Hydrogel Volume Transition. <i>Macromolecular Theory and Simulations</i> , 2004 , 13, 13-29	1.5	64
29	Modeling Investigation of Volume Variation Kinetics of Fast Response Hydrogels. <i>Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics</i> , 2004 , 44, 113-130		25
28	Acid/Base-treated activated carbons: characterization of functional groups and metal adsorptive properties. <i>Langmuir</i> , 2004 , 20, 2233-42	4	264
27	Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors. <i>Chemosphere</i> , 2004 , 54, 397-404	8.4	91
26	Explosive Waste Treatment 2004 , 1113-1124		1
25	Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns. <i>Carbon</i> , 2003 , 41, 1635-1644	10.4	58
24	Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. <i>Carbon</i> , 2003 , 41, 1979-1986	10.4	294
23	Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. <i>Journal of Colloid and Interface Science</i> , 2003 , 260, 265-72	9.3	181
22	Optimization of membrane physical and chemical cleaning by a statistically designed approach. <i>Journal of Membrane Science</i> , 2003 , 219, 27-45	9.6	164
21	Aminated Polyacrylonitrile Fibers for Lead and Copper Removal. <i>Langmuir</i> , 2003 , 19, 5058-5064	4	305
20	Study on feed pretreatment for membrane filtration of secondary effluent. <i>Separation and Purification Technology</i> , 2002 , 29, 171-179	8.3	92
19	Dried waste activated sludge as biosorbents for metal removal: adsorptive characterization and prevention of organic leaching. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 657-662	3.5	44
18	Effects of competitive ions, humic acid, and pH on removal of ammonium and phosphorous from the synthetic industrial effluent by ion exchange resins. <i>Waste Management</i> , 2002 , 22, 711-9	8.6	85
17	Elucidation of Interactions between Metal Ions and Ca Alginate-Based Ion-Exchange Resin by Spectroscopic Analysis and Modeling Simulation. <i>Langmuir</i> , 2002 , 18, 9413-9421	4	191

LIST OF PUBLICATIONS

16	Modeling of Depleted Uranium Transport in Subsurface Systems. <i>Water, Air, and Soil Pollution</i> , 2002 , 140, 173-201	2.6	20
15	Key factors in chemical reduction by hydrazine for recovery of precious metals. <i>Chemosphere</i> , 2002 , 49, 363-70	8.4	111
14	Surface charge and metal ion adsorption on an H-type activated carbon: experimental observation and modeling simulation by the surface complex formation approach. <i>Carbon</i> , 2001 , 39, 1491-1504	10.4	77
13	Novel cake characteristics of waste-activated sludge. <i>Water Research</i> , 2001 , 35, 1358-62	12.5	19
12	Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. <i>Water Research</i> , 2001 , 35, 2385-94	12.5	145
11	CHARACTERIZATION OF A Ca-ALGINATE BASED ION-EXCHANGE RESIN AND ITS APPLICATIONS IN LEAD, COPPER, AND ZINC REMOVAL. <i>Separation Science and Technology</i> , 2001 , 36, 3617-3637	2.5	43
10	Study on EDTA-chelated copper adsorption by granular activated carbon. <i>Journal of Chemical Technology and Biotechnology</i> , 2000 , 75, 791-797	3.5	14
9	Advanced primary treatment of waste water using a bio-flocculation-adsorption sedimentation process. <i>Acta Biotechnologica</i> , 2000 , 20, 53-64		32
8	Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns. <i>Separation and Purification Technology</i> , 2000 , 19, 157-167	8.3	106
7	Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2000 , 35, 817-835	2.3	25
6	Comprehensive Investigation of Important Factors Governing Metal-Ion Adsorption by an H-Type Granular Activated Carbon. <i>Separation Science and Technology</i> , 2000 , 35, 2063-2081	2.5	12
5	Modeling of metal ion sorption phenomena in environmental systems. <i>Studies in Surface Science and Catalysis</i> , 1999 , 120, 285-317	1.8	6
4	Equilibrium and Kinetic Studies of Copper Ion Uptake by Calcium Alginate. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	89
3	Equilibrium and kinetic studies of copper adsorption by activated carbon. <i>Separation and Purification Technology</i> , 1996 , 6, 133-146		54
2	Remediation of Heavy Metals in the Environment		9
1	Critical review on lanthanum-based materials used for water purification through adsorption of inorganic contaminants. <i>Critical Reviews in Environmental Science and Technology</i> ,1-52	11.1	5