Xuesong Zhou

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/7163694/publications.pdf
Version: 2024-02-01

2 Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism. Transportation Research Part B: Methodological, 2022, 155, 240-277.

7	Synchronizing time-dependent transportation services: Reformulation and solution algorithm using
quadratic assignment problem. Transportation Research Part B: Methodological, 2021, 152, 140-179.	

8 Detecting phoneâ€related pedestrian distracted behaviours via a twoâ€branch convolutional neural network. IET Intelligent Transport Systems, 2021, 15, 147-158.
$1.7 \quad 8$
$9 \quad$ Operational design for shuttle systems with modular vehicles under oversaturated traffic:
9 Continuous modeling method. Transportation Research Part B: Methodological, 2020, 132, 76-100.

A stepwise interpretable machine learning framework using linear regression (LR) and long 10 short-term memory (LSTM): City-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV)
3.9

38 service. Transportation Research Part C: Emerging Technologies, 2020, 120, 102786.
11 Green logistics location-routing problem with eco-packages. Transportation Research, Part E:Logistics and Transportation Review, 2020, 143, 102118.
$3.7 \quad 118$
Integrated vehicle assignment and routing for system-optimal shared mobility planning with
endogen3.9
A mixed integer programming formulation and scalable solution algorithms for traffic control
coordination across multiple intersections based on vehicle space-time trajectories. Transportation
Research Part B: Methodological, 2020, 134, 266-304.

14 Trajectory data-based traffic flow studies: A revisit. Transportation Research Part C: Emerging

19	ADMM-based problem decomposition scheme for vehicle routing problem with time windows. Transportation Research Part B: Methodological, 2019, 129, 156-174.	2.8	68
20	A cumulative service state representation for the pickup and delivery problem with transfers. Transportation Research Part B: Methodological, 2019, 129, 351-380.	2.8	24
21	Observability quantification of public transportation systems with heterogeneous data sources: An information-space projection approach based on discretized space-time network flow models. Transportation Research Part B: Methodological, 2019, 128, 302-323.	2.8	14
22	Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods. Transportation Research Part B: Methodological, 2019, 128, 344-379.	2.8	77
23	Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method. Transportation Research Procedia, 2019, 38, 359-379.	0.8	2
24	Open-Source Public Transportation Mobility Simulation Engine DTALite-S: A Discretized Spaceâ€"Time Network-Based Modeling Framework for Bridging Multi-agent Simulation and Optimization. Urban Rail Transit, 2019, 5, 1-16.	0.9	24
25	Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach. Transportation Research Part B: Methodological, 2019, 121, 135-167.	2.8	66
26	Analyzing the Impact of Traffic Congestion Mitigation: From an Explainable Neural Network Learning Framework to Marginal Effect Analyses. Sensors, 2019, 19, 2254.	2.1	13
27	Balancing a oneâ€way corridor capacity and safetyâ€oriented reliability: A stochastic optimization approach for metro train timetabling. Naval Research Logistics, 2019, 66, 297-320.	1.4	11
28	An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network. Transportation Research Part B: Methodological, 2019, 125, 1-28.	2.8	48
29	Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method. Transportation Research Part B: Methodological, 2019, 122, 1-19.	2.8	60

Kinematic wave-oriented Markov Chain model to capture the spatiotemporal correlations of coupled traffic states. , 2019, , .

Finding robust and consistent space-time delivery paths for multi-day vehicle routing problem*. , 2019,

37	Network-oriented household activity pattern problem for system optimization. Transportation Research Part C: Emerging Technologies, 2018, 94, 250-269.	3.9	13
38	Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking. Transportation Research Part B: Methodological, 2018, 107, 70-101.	2.8	51
39	Hierarchical travel demand estimation using multiple data sources: A forward and backward propagation algorithmic framework on a layered computational graph. Transportation Research Part C: Emerging Technologies, 2018, 96, 321-346.	3.9	66
40	Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework. Transportation Research Part B: Methodological, 2018, 117, 228-253.	2.8	20
41	Open-source VRPLite Package for Vehicle Routing with Pickup and Delivery: A Path Finding Engine for Scheduled Transportation Systems. Urban Rail Transit, 2018, 4, 68-85.	0.9	26
42	Quantifying travel time variability at a single bottleneck based on stochastic capacity and demand distributions. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2017, 21, 79-93.	2.6	28
43	Eco-reliable path finding in time-variant and stochastic networks. Energy, 2017, 121, 372-387.	4.5	9
44	Multi-scenario optimization approach for assessing the impacts of advanced traffic information under realistic stochastic capacity distributions. Transportation Research Part C: Emerging Technologies, 2017, 77, 113-133.	3.9	17
45	Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks. Transportation Research Part B: Methodological, 2017, 97, 157-181.	2.8	110

Optimizing on-time arrival probability and percentile travel time for elementary path finding in 46 time-dependent transportation networks: Linear mixed integer programming reformulations. 2.8
47 Large-scale dynamic transportation network simulation: A space-time-event parallel computing approach. Transportation Research Part C: Emerging Technologies, 2017, 75, 1-16.48 Customized bus service design for jointly optimizing passenger-to-vehicle assignment and vehicle
$3.9 \quad 141$routing. Transportation Research Part C: Emerging Technologies, 2017, 85, 451-475.

55	Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on stateâ€"spaceâ€"time network representations. Transportation Research Part B: Methodological, 2016, 89, 19-42.	2.8	226
56	Capacitated transit service network design with boundedly rational agents. Transportation Research Part B: Methodological, 2016, 93, 225-250.	2.8	74
57	Modeling Visit Probabilities within Networkâ€Time Prisms Using <scp>M</scp>arkov Techniques. Geographical Analysis, 2016, 48, 18-42.	1.9	23
58	How Many and Where to Locate Parking Lots? A Spaceâ€"time Accessibility-Maximization Modeling Framework for Special Event Traffic Management. Urban Rail Transit, 2016, 2, 59-70.	0.9	21
59	Eco-system optimal time-dependent flow assignment in a congested network. Transportation Research Part B: Methodological, 2016, 94, 217-239.	2.8	41
60	Evacuation planning for disaster responses: A stochastic programming framework. Transportation Research Part C: Emerging Technologies, 2016, 69, 150-172.	3.9	39
61	Estimating the most likely spaceâ€"time paths, dwell times and path uncertainties from vehicle trajectory data: A time geographic method. Transportation Research Part C: Emerging Technologies, 2016, 66, 176-194.	3.9	46

62 A Train Dispatching Model Under a Stochastic Environment: Stable Train Routing Constraints and Reformulation. Networks and Spatial Economics, 2016, 16, 791-820.

Personalized real-time traffic information provision: Agent-based optimization model and solution
framework. Transportation Research Part C: Emerging Technologies, 2016, 64, 164-182.

Integration of signal timing estimation model and dynamic traffic assignment in feedback loops:
system design and case study. Journal of Advanced Transportation, 2015, 49, 683-699.

A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in
Traffic Incident Monitoring Applications. Sensors, 2015, 15, 13874-13898.

Hierarchical Multiresolution Traffic Simulator for Metropolitan Areas. Transportation Research
66 Record, 2015, 2497, 63-72.
1.0

4

Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time
Warping approach. Transportation Research Part B: Methodological, 2015, 73, 59-80.

Traffic zone division based on big data from mobile phone base stations. Transportation Research Part C: Emerging Technologies, 2015, 58, 278-291.
3.9

109

A mixed integer programming model for optimizing multi-level operations process in railroad yards.
Transportation Research Part B: Methodological, 2015, 80, 19-39.
2.8

29

Characterizing corridor-level travel time distributions based on stochastic flows and segment
capacities. Cogent Engineering, 2015, 2, 990672.
1.1

3

Integrating a simplified emission estimation model and mesoscopic dynamic traffic simulator to
71 efficiently evaluate emission impacts of traffic management strategies. Transportation Research, Part
3.2

81
D: Transport and Environment, 2015, 37, 123-136.
Demand-Driven Train Schedule Synchronization for High-Speed Rail Lines. IEEE Transactions on
Intelligent Transportation Systems, 2015, 16, 2642-2652.

73	Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints. Transportation Research Part B: Methodological, 2015, 76, 117-135.	2.8	334
74	Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork. Transportation Research Part B: Methodological, 2015, 81, 103-130.	2.8	53
75	Transportation network design for maximizing spaceấ"time accessibility. Transportation Research Part B: Methodological, 2015, 81, 555-576.	2.8	125
76	Estimating risk effects of driving distraction: A dynamic errorable car-following model. Transportation Research Part C: Emerging Technologies, 2015, 50, 117-129.	3.9	36
77	Fast train: A computationally efficient train routing and scheduling engine for general rail networks. , 2014, , .		0
78	Short-Term Highway Traffic State Prediction Using Structural State Space Models. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2014, 18, 309-322.	2.6	24
79	DTALite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration. Cogent Engineering, 2014, 1, 961345.	1.1	113

80 A method of road traffic state acquisition based on wireless sensor networks. , 2014, , .

81 Credibility-based rescheduling model in a double-track railway network: a fuzzy reliable optimization approach. Omega, 2014, 48, 75-93. $3.6 \quad 85$
Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with 82 network-based cumulative flow variables. Transportation Research Part B: Methodological, 2014, 67,2.8214
208-234.
83 Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem. Transportation Research Part B: Methodological, 2014, 59, 22-44.
Use of Spatiotemporal Constraints to Quantify Transit Accessibility. Transportation Research Record, 2014, 2417, 130-138. 1.0 11
Linear Programming Model for Estimating High-Resolution Freeway Traffic States from Vehicle 1.0 3
85 Identification and Location Data. Transportation Research Record, 2014, 2421, 151-160.Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three2.8100detector approach. Transportation Research Part B: Methodological, 2013, 57, 132-157.
$3.9 \quad 370$
87 Optimizing urban rail timetable under time-dependent demand and oversaturated conditions.
Transportation Research Part C: Emerging Technologies, 2013, 36, 212-230.
91
92

> Incorporating Stochastic Road Capacity into Day-to-Day Traffic Simulation and Traveler Learning
> Framework. Transportation Research Record, 2011, 2254, 112-121.
1.0

27

Robust single-track train dispatching model under a dynamic and stochastic environment: A
92 scenario-based rolling horizon solution approach. Transportation Research Part B: Methodological,
2.8

179
2011, 45, 1080-1102.
Finding the most reliable path with and without link travel time correlation: A Lagrangian
substitution based approach. Transportation Research Part B: Methodological, 2011, 45, 1660-1679.
94 An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation
Applications. Transportation Science, 2010, 44, 254-273.
$2.8 \quad 105$

Equivalent gap function-based reformulation and solution algorithm for the dynamic user
equilibrium problem. Transportation Research Part B: Methodological, 2009, 43, 345-364.
$2.8 \quad 66$

A bi-criterion dynamic user equilibrium traffic assignment model and solution algorithm for 96 evaluating dynamic road pricing strategies. Transportation Research Part C: Emerging Technologies, 2008, 16, 371-389.
A structural state space model for real-time traffic originâ $€^{\prime \prime}$ destination demand estimation and
prediction in a day-to-day learning framework. Transportation Research Part B: Methodological, 2007,
$41,823-840$.

Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds. Transportation Research Part B: Methodological, 2007, 41, 320-341.
2.8

243

$99 \quad$| Dynamic Originâ€"Destination Demand Estimation Using Automatic Vehicle Identification Data. IEEE |
| :--- |
| Transactions on Intelligent Transportation Systems, 2006, 7, 105-114. |

100 Dynamic Origin-Destination Trip Demand Estimation for Subarea Analysis. Transportation Research Record, 2006, 1964, 176-184.

101 \begin{tabular}{l}
Bicriteria train scheduling for high-speed passenger railroad planning applications. European Journal

of Operational Research, 2005, 167, 752-771.

\quad

170

102

Dynamic Origin-Destination Demand Estimation with Multiday Link Traffic Counts for Planning

Applications. Transportation Research Record, 2003, 1831, 30-38.
\end{tabular}

[^0]
[^0]: 103
 Number and Location of Sensors for Real-Time Network Traffic Estimation and Prediction: Sensitivity
 Analysis. , 0, .

