List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7163444/publications.pdf Version: 2024-02-01

ΜΛΙΥΙΟ ΕΛΝ

#	Article	IF	CITATIONS
1	Shape Evolution of Cu2O Nanostructures via Kinetic and Thermodynamic Controlled Growth. Journal of Physical Chemistry B, 2006, 110, 20801-20807.	1.2	220
2	Formation of Ag2Se Nanotubes and Dendrite-like Structures from UV Irradiation of a CSe2/Ag Colloidal Solution. Langmuir, 2006, 22, 9712-9717.	1.6	80
3	Stereoselective Hydrosilylation of Terminal Alkynes Catalyzed by [Cp*IrCl2]2:Â A Computational and Experimental Study. Organometallics, 2007, 26, 1157-1160.	1.1	58
4	Facile Synthesis of Single-Crystalline γ-Cul Nanotetrahedrons and Their Induced Transformation to Tetrahedral CuO Nanocages. Journal of Physical Chemistry C, 2007, 111, 9166-9171.	1.5	56
5	Synthesis and Self-Assembly of One-Dimensional Sub-10 nm Ag Nanoparticles with Cyclodextrin. Journal of Physical Chemistry C, 2008, 112, 4141-4145.	1.5	54
6	A Diode Laser and Modeling Study of Mixed (CH4â^'H2â^'O2) AC Plasmas. Journal of Physical Chemistry A, 1999, 103, 4118-4128.	1.1	52
7	Catalytic Hydrogen Generation from the Hydrolysis of Silanes by Ruthenium Complexes. Organometallics, 2011, 30, 4008-4013.	1.1	50
8	Thermal and Photochemical Reactivity of Manganese Tricarbonyl and Tetracarbonyl Complexes with a Bulky Diazabutadiene Ligand. Inorganic Chemistry, 2014, 53, 4081-4088.	1.9	50
9	Tunable Diode Laser Diagnostic Studies of H2-Ar-O2 Microwave Plasmas Containing Methane or Methanol. Plasma Chemistry and Plasma Processing, 1999, 19, 395-419.	1.1	49
10	Photocatalytic Transformation of Organic and Water-Soluble Thiols into Disulfides and Hydrogen under Aerobic Conditions Using Mn(CO) ₅ Br. Organometallics, 2011, 30, 4136-4143.	1.1	45
11	Preparation of Graphite-Coated Iron Nanoparticles Using Pulsed Laser Decomposition of Fe3(CO)12and PPh3in Hexane. Chemistry of Materials, 2007, 19, 3845-3849.	3.2	42
12	The Dithiolate-Bridged Diiron Hexacarbonyl Complex Na ₂ [(1¼-SCH ₂ CH ₂ COO)Fe(CO) ₃] ₂ as a Water-Soluble PhotoCORM. Organometallics, 2014, 33, 959-963.	1.1	38
13	Laser-based synthesis of core Ag-shell AgI nanoparticles. Chemical Physics Letters, 2005, 406, 289-293.	1.2	37
14	Coreâ^'Shell and Hollow Nanocrystal Formation via Small Molecule Surface Photodissociation; Ag@Ag2Se as an Example. Journal of Physical Chemistry B, 2006, 110, 15812-15816.	1.2	36
15	Uncovering Metastable α-Ag ₂ MoO ₄ Phase Under Ambient Conditions. Overcoming High Pressures by 2,3-Bis(2-pyridyl)pyrazine Doping. Crystal Growth and Design, 2015, 15, 3032-3037.	1.4	34
16	CpMn(CO)3-Catalyzed Photoconversion of Thiols into Disulfides and Dihydrogen. Organometallics, 2010, 29, 4459-4463.	1.1	32
17	Self-Organization of Spherical, Core–Shell Palladium Aggregates by Laser-Induced and Thermal Decomposition of [Pd(PPh3)4]. Angewandte Chemie - International Edition, 2006, 45, 1120-1123.	7.2	31
18	Hydrogen Generation from Water upon CpMn(CO)3Irradiation in a Hexane/Water Biphasic System. Organometallics, 2011, 30, 2154-2159.	1.1	30

#	Article	IF	CITATIONS
19	Controlled Synthesis of Î ² -Agl Nanoplatelets from Selective Nucleation of Twinned Ag Seeds in a Tandem Reaction. Journal of Physical Chemistry C, 2007, 111, 2953-2958.	1.5	29
20	Electrocatalytic hydrogen generation by a trithiolato-bridged dimanganese hexacarbonyl anion with a turnover frequency exceeding 40 000 s ^{⒒1} . Chemical Communications, 2014, 50, 6630-6632.	2.2	28
21	A novel iron complex for highly efficient catalytic hydrogen generation from the hydrolysis of organosilanes. Chemical Communications, 2014, 50, 7191-7194.	2.2	27
22	[Cp*IrCl2]2-Assisted Câ‹®C Bond Cleavage with Water: An Experimental and Computational Study. Organometallics, 2007, 26, 1173-1177.	1.1	26
23	Ruthenium carbonyl-catalysed Si–heteroatom X coupling (XÂ=ÂS, O, N). Journal of Organometallic Chemistry, 2012, 717, 9-13.	0.8	26
24	Preparation of rhenium nanoparticles via pulsed-laser decomposition and catalytic studies. Journal of Colloid and Interface Science, 2012, 369, 164-169.	5.0	26
25	Direct Functionalization of the Hydroxyl Group of the 6-Mercapto-1-hexanol (MCH) Ligand Attached to Gold Nanoclusters. Journal of Physical Chemistry B, 2006, 110, 21690-21693.	1.2	24
26	Electrocatalytic proton reduction catalyzed by a dimanganese disulfide carbonyl complex containing a redox-active internal disulfide bond. Dalton Transactions, 2014, 43, 16977-16980.	1.6	24
27	A simple route to water-soluble size-tunable monodispersed Pd nanoparticles from light decomposition of Pd(PPh3)4. Chemical Physics Letters, 2006, 428, 352-355.	1.2	19
28	Ligandâ€Controlled Regio―and Stereoselective Addition of Carboxylic Acids Onto Terminal Alkynes Catalyzed by Carbonylruthenium(0) Complexes. European Journal of Inorganic Chemistry, 2010, 2010, 4631-4635.	1.0	18
29	Facile Synthesis of Single Crystalline Rhenium (VI) Trioxide Nanocubes with High Catalytic Efficiency for Photodegradation of Methyl Orange. Journal of Colloid and Interface Science, 2013, 397, 18-23.	5.0	18
30	Addition of pyrroles onto terminal alkynes catalyzed by a dinuclear ruthenium (II) complex. Journal of Organometallic Chemistry, 2012, 708-709, 58-64.	0.8	17
31	Cyclopentadienyl iron dicarbonyl (CpFe(CO) ₂) derivatives as apoptosis-inducing agents. RSC Advances, 2016, 6, 18814-18823.	1.7	16
32	Ancillary Ligand Effects upon the Photochemistry of Mn(bpy)(CO) ₃ X Complexes (X =) Tj ETQq0 0 0	rgßŢ /Ove	erlock 10 Tf 5
33	Catalytic hydrogen evolution from hydrolytic oxidation of organosilanes with silver nitrate catalyst. RSC Advances, 2014, 4, 37645-37648.	1.7	15
34	Intramolecular C–C Bond Coupling of Nitriles to a Diimine Ligand in Group 7 Metal Tricarbonyl Complexes. Inorganic Chemistry, 2015, 54, 11441-11449.	1.9	15
35	TR-FTIR absorption spectroscopy of transition metal carbonyl radicals generated by photodissociation of metal–metal bonds, by halogen abstraction or by radical ligand substitution. Journal of Organometallic Chemistry, 2005, 690, 4132-4138.	0.8	14
36	Photochemical Reaction of Cp*Ir(CO) ₂ with C ₆ F ₅ X (X = CN, F): Formation of Diiridium(II) Complexes. Organometallics, 2013, 32, 1053-1059.	1.1	14

#	Article	IF	CITATIONS
37	Colloidal Beading: Sonication-Induced Stringing of Selenium Particles. Langmuir, 2014, 30, 7313-7318.	1.6	14
38	Bis(cyclopentadienyl)nickel(II) μ-Thiolato Complexes as Proton Reduction Electrocatalysts. Inorganic Chemistry, 2019, 58, 12178-12183.	1.9	14
39	Preparation of highly uniform 1-dimensional α-Ag ₂ WO ₄ nanostructures with controllable aspect ratio and study of the growth mechanism. CrystEngComm, 2016, 18, 8010-8019.	1.3	13
40	Modelling fluorescence lifetimes with TD-DFT: a case study with syn-bimanes. RSC Advances, 2016, 6, 87237-87245.	1.7	13
41	Rapid intersystem crossings in anti bimanes. Physical Chemistry Chemical Physics, 2016, 18, 7404-7413.	1.3	13
42	Crystal Origami: Preparation of βâ€Ag ₂ MoO ₄ Concave and Convex Crystals with Highâ€Index Facets. ChemNanoMat, 2017, 3, 178-182.	1.5	13
43	Electrocatalytic proton reduction by an air-stable nickel(<scp>ii</scp>)-thiolato PNN pincer complex. Dalton Transactions, 2018, 47, 8483-8488.	1.6	13
44	Using non-empirically tuned range-separated functionals with simulated emission bands to model fluorescence lifetimes. Physical Chemistry Chemical Physics, 2017, 19, 21046-21057.	1.3	12
45	A Robust Pentacoordinated Iron(II) Proton Reduction Catalyst Stabilized by a Tripodal Phosphine. Inorganic Chemistry, 2017, 56, 10926-10931.	1.9	12
46	Thermal Dehydrogenation of Dimethylamine Borane Catalyzed by a Bifunctional Rhenium Complex. Organometallics, 2019, 38, 2602-2609.	1.1	12
47	Preparation of Ag Stellar Dendrites: Modeling the Growth of Stellar Snowflakes. Crystal Growth and Design, 2014, 14, 6067-6072.	1.4	11
48	Electrochemical proton reduction catalysed by selenolato-manganese carbonyl complexes. RSC Advances, 2015, 5, 39303-39309.	1.7	11
49	FTIR Studies of Iron–Carbonyl Intermediates in Allylic Alcohol Photoisomerization. Chemistry - A European Journal, 2006, 12, 5128-5133.	1.7	10
50	Reactivity of the CpMn(CO)2â^'XR Bond [X = Cl, Br]: A Kinetic Study Using Rapid-Scan FTIR Spectroscopy. Organometallics, 2008, 27, 5488-5493.	1.1	10
51	Ru4(CO)8(μ-OOCAd)4(PPh3)2: Phosphine Derivative of an Electron-Deficient Linear Tetraruthenium Cluster. Organometallics, 2011, 30, 6774-6777.	1.1	10
52	Catalytic Hydrosilylation of Carbonyls via Re(CO)5Cl Photolysis. Organometallics, 2012, 31, 3880-3887.	1.1	10
53	Oxidation of aromatic alkenes and alkynes catalyzed by a hexa-acetonitrile iron(ii) ionic complex [Fe(CH3CN)6][BF4]2. New Journal of Chemistry, 2018, 42, 11131-11136.	1.4	10
54	Osmium Carbonyl Clusters on Gold and Silver Nanoparticles as Models for Studying the Interaction with the Metallic Surface. Journal of Physical Chemistry C, 2009, 113, 18562-18569.	1.5	9

#	Article	IF	CITATIONS
55	Ligand Substitution from the (η ⁵ -DMP)Mn(CO) ₂ (Solv) [DMP = 2,5-dimethylpyrrole, Solv = solvent] Complexes: To Ring Slip or Not to Ring Slip?. Inorganic Chemistry, 2010, 49, 7597-7604.	1.9	9
56	Proton reduction using cobalt glyoximes with isothiocyanate and aniline axial ligands. Polyhedron, 2015, 96, 38-43.	1.0	9
57	Shapeâ€Controlled Preparation of Basic Bismuth Nitrate Crystals with High Iodideâ€Removal Capacities. ChemNanoMat, 2016, 2, 133-139.	1.5	9
58	Synthetic, X-ray Diffraction, Electrochemical, and Density Functional Theoretical Studies of (Indenyl)ruthenium Complexes Containing Dithiolate Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 3827-3840.	1.0	8
59	Stoichiometric H2 production from H2O upon Mn2(CO)10 photolysis. Journal of Organometallic Chemistry, 2013, 724, 1-6.	0.8	8
60	Vibrational spectroscopy and 266 nm photochemistry of NCNCS and CNCN. Chemical Physics Letters, 2003, 380, 117-122.	1.2	7
61	Preparation and Characterization of Cr(CO)4dpp (Chromium Tetracarbonyl 2,3-Bis(2â€~-pyridyl)pyrazine) Adsorbed on Silver Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 19657-19663.	1.2	7
62	Metal-free catalytic hydrogen production from a polymethylhydrosilane–water mixture. RSC Advances, 2016, 6, 5903-5906.	1.7	7
63	Highly-phosphorescent tungsten(0) carbonyl pyridyl-imidazole complexes as photosensitisers. Dalton Transactions, 2017, 46, 11008-11012.	1.6	7
64	The CN free radical in acetonitrile discharges. Journal of Applied Physics, 2003, 93, 9497-9502.	1.1	6
65	The CN and CS transient species in CH3SCN discharges. Chemical Physics, 2004, 302, 171-177.	0.9	6
66	Significant O–H Bond Weakening in CpMn(CO)2(CH3OH): Evidence for the Generation of the CpMn(CO)2(CH3O) Radical upon H Atom Abstraction by O2. Organometallics, 2013, 32, 4359-4365.	1.1	5
67	Hydrosilylation of Aldehydes by a Manganese α-Diimine Complex. Inorganics, 2020, 8, 61.	1.2	5
68	Velocity and magnetic modulation methods applied to emission spectroscopy. Chemical Physics Letters, 1994, 230, 555-560.	1.2	4
69	Characterization of SiN and other transient species in a silicon tetrachloride–nitrogen discharge. Chemical Physics Letters, 2003, 367, 645-650.	1.2	4
70	FTIR studies on the gas phase laser-induced decomposition of CF3CH2ONO. Chemical Physics, 2006, 320, 259-266.	0.9	4
71	Methyl abstraction kinetics of CpFe(CO)2Me using the benzyl radical clock. Journal of Organometallic Chemistry, 2006, 691, 687-692.	0.8	4
72	Infrared studies of halide binding with CpMn(CO)2X complexes where XÂ=Âligands bearing the O–H or N–H group. Journal of Organometallic Chemistry, 2013, 729, 14-19.	0.8	4

#	Article	IF	CITATIONS
73	A persistent manganese carbonyl radical with infrared absorption and fluorescence modality. Journal of Organometallic Chemistry, 2014, 759, 11-14.	0.8	4
74	Reuleaux Triangle Disks: New Shape on the Block. Journal of the American Chemical Society, 2014, 136, 12840-12843.	6.6	4
75	FTIR and computational studies of gas-phase hydrogen atom abstraction kinetics by t-butoxy radical. Chemical Physics Letters, 2006, 427, 276-280.	1.2	3
76	Reactions of Cp*Ir(CO)2 with pentafluorobenzonitrile: Half-sandwich iridium complexes Cp*Ir(CO)(p-C6F4CN)(X). Journal of Organometallic Chemistry, 2013, 741-742, 176-180.	0.8	3
77	Proton reduction using cyclopentadienyl Fe(II) (benzene-1,2-dithiolato) carbonyl complexes as electrocatalysts. International Journal of Hydrogen Energy, 2020, 45, 31976-31984.	3.8	3
78	Energy distributions of CO produced in an acetone-containing discharge. Chemical Physics Letters, 2004, 390, 323-327.	1.2	2
79	The reaction of [Cp*IrCl2]2 with 2-methyl-1-butene-3-yne: Formation of a η3-tetraenyl transition metal complex. Journal of Organometallic Chemistry, 2013, 739, 52-56.	0.8	2
80	Stable manganese carbonyl radicals as a rapid colorimetric thiol and hydrazine sensor. RSC Advances, 2015, 5, 15159-15163.	1.7	2
81	Computational modelling of singlet excitation energy transfer: a DFT/TD-DFT study of the ground and excited state properties of a syn bimane dimer system using non-empirically tuned range-separated functionals. New Journal of Chemistry, 2018, 42, 13732-13743.	1.4	2
82	Triphos nickel(II) halide pincer complexes as robust proton reduction electrocatalysts. Molecular Catalysis, 2020, 490, 110950.	1.0	2
83	Nickel(II) phosphine-catalysed hydrodehalogenation of aryl halides under mild ambient conditions. Molecular Catalysis, 2022, 524, 112310.	1.0	2
84	Catalytic rate enhancement observed for alkyne hydrocarboxylation using ruthenium carbonyl-capped nanostructures. Journal of Colloid and Interface Science, 2010, 348, 559-564.	5.0	1
85	The formation of aldehydes from the photochemically activated reaction ofÂCp*Ir(CO)(Cl)(CH2R) complexes with water. Journal of Organometallic Chemistry, 2013, 724, 275-280.	0.8	1
86	Group VI transition metal carbonyl hydrosulfides Na[M(CO)5(SH)] (M = Cr, Mo, W) as water-soluble H2S-releasing agents. RSC Advances, 2015, 5, 10703-10706.	1.7	1
87	Photophysical properties of acetylene-linked <i>syn</i> bimane oligomers: a molecular photonic wire. Physical Chemistry Chemical Physics, 2018, 20, 1150-1163.	1.3	1
88	Dithiolato-Bridged Nickel(II) Salicylcysteamine Complexes as Robust Proton Reduction Electrocatalysts: Cyclic Voltammetry and Computational Studies. Inorganic Chemistry, 2021, 60, 17933-17941.	1.9	1
89	Computational study of molecular properties with dual basis sets. Physical Chemistry Chemical Physics, 2013, 15, 16566.	1.3	0
90	Tetrahedral Cu(I) complexes as electrocatalysts for the reduction of protons to dihydrogen gas. European Journal of Inorganic Chemistry, 2021, 2021, 2499-2504.	1.0	0