Pablo A Pasten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7162933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-free biosensors for rapid detection of water contaminants. Nature Biotechnology, 2020, 38, 1451-1459.	17.5	221
2	Manganese Oxides:Â Parallels between Abiotic and Biotic Structures. Journal of the American Chemical Society, 2006, 128, 11188-11198.	13.7	134
3	Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. Journal of Geochemical Exploration, 2006, 91, 71-80.	3.2	100
4	Nanocrystalline Todorokite-Like Manganese Oxide Produced by Bacterial Catalysis. Journal of the American Chemical Society, 2003, 125, 14284-14285.	13.7	68
5	Partitioning geochemistry of arsenic and antimony, El Tatio Geyser Field, Chile. Applied Geochemistry, 2009, 24, 664-676.	3.0	63
6	Copper Corrosion and Biocorrosion Events in Premise Plumbing. Materials, 2017, 10, 1036.	2.9	59
7	Localising urban sustainability indicators: The CEDEUS indicator set, and lessons from an expert-driven process. Cities, 2020, 101, 102683.	5.6	49
8	Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion. Journal of Applied Microbiology, 2010, 109, 771-782.	3.1	48
9	Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Science of the Total Environment, 2014, 466-467, 490-502.	8.0	48
10	Enhanced Copper Release from Pipes by Alternating Stagnation and Flow Events. Environmental Science & Technology, 2007, 41, 7430-7436.	10.0	44
11	Atomic-Scale Structure of Biogenic Materials by Total X-ray Diffraction: A Study of Bacterial and Fungal MnO _{<i>x</i>} . ACS Nano, 2009, 3, 441-445.	14.6	43
12	Effect of substrate depth and roof layers on green roof temperature and water requirements in a semi-arid climate. Ecological Engineering, 2016, 97, 624-632.	3.6	42
13	Active and legacy mining in an arid urban environment: challenges and perspectives for Copiapó, Northern Chile. Environmental Geochemistry and Health, 2016, 38, 1001-1014.	3.4	36
14	Boron accumulation in Puccinellia frigida, an extremely tolerant and promising species for boron phytoremediation. Journal of Geochemical Exploration, 2015, 150, 25-34.	3.2	31
15	Incomplete Mixing in the Fate and Transport of Arsenic at a River Affected by Acid Drainage. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	28
16	Influence of solid corrosion by-products on the consumption of dissolved oxygen in copper pipes. Corrosion Science, 2009, 51, 1030-1037.	6.6	23
17	Porous Media Characterization to Simulate Water and Heat Transport through Green Roof Substrates. Vadose Zone Journal, 2017, 16, 1-14.	2.2	23
18	Arsenite and arsenate immobilization by preformed and concurrently formed disordered mackinawite (FeS). Chemical Geology, 2017, 475, 62-75.	3.3	23

PABLO A PASTEN

#	Article	IF	CITATIONS
19	Response of suspended sediment particle size distributions to changes in water chemistry at an Andean mountain stream confluence receiving arsenic rich acid drainage. Hydrological Processes, 2017, 31, 296-307.	2.6	23
20	Field and Numerical Investigation of Transport Mechanisms in a Surface Storage Zone. Journal of Geophysical Research F: Earth Surface, 2019, 124, 938-959.	2.8	22
21	Increase of the concentration of dissolved copper in drinking water systems due to flow-induced nanoparticle release from surface corrosion by-products. Corrosion Science, 2010, 52, 3492-3503.	6.6	21
22	Arsenic speciation in sinter mineralization from a hydrothermal channel of El Tatio geothermal field, Chile. Journal of Hydrology, 2014, 518, 434-446.	5.4	21
23	Multi-technique approach to assess the effects of microbial biofilms involved in copper plumbing corrosion. Bioelectrochemistry, 2014, 97, 15-22.	4.6	21
24	A new aerobic chemolithoautotrophic arsenic oxidizing microorganism isolated from a high Andean watershed. Biodegradation, 2018, 29, 59-69.	3.0	20
25	Towards a benchmarking model for winery wastewater treatment and disposal. Water Science and Technology, 2007, 56, 153-160.	2.5	19
26	Differential arsenic binding in the sediments of two sites in Chile's lower Loa River basin. Science of the Total Environment, 2014, 466-467, 387-396.	8.0	19
27	Empirical model for dissolved oxygen depletion during corrosion of drinking water copper pipes. Corrosion Science, 2010, 52, 2250-2257.	6.6	16
28	Enhancement of particle aggregation in the presence of organic matter during neutralization of acid drainage in a stream confluence and its effect on arsenic immobilization. Chemosphere, 2017, 180, 574-583.	8.2	16
29	Sediment composition for the assessment of water erosion and nonpoint source pollution in natural and fire-affected landscapes. Science of the Total Environment, 2015, 512-513, 26-35.	8.0	14
30	Potential accumulation of contaminated sediments in a reservoir of a highâ€Andean watershed: Morphodynamic connections with geochemical processes. Water Resources Research, 2015, 51, 3181-3192.	4.2	13
31	Daily Freeze–Thaw Cycles Affect the Transport of Metals in Streams Affected by Acid Drainage. Water (Switzerland), 2016, 8, 74.	2.7	13
32	A comparative study of soil metal concentrations in Chilean urban parks using four pollution indexes. Applied Geochemistry, 2022, 141, 105230.	3.0	13
33	Modeling MIC copper release from drinking water pipes. Bioelectrochemistry, 2014, 97, 23-33.	4.6	12
34	An integrated study of health, environmental and socioeconomic indicators in a mining-impacted community exposed to metal enrichment. Environmental Geochemistry and Health, 2019, 41, 2505-2519.	3.4	12
35	Copper entrapment and immobilization during cement hydration in concrete mixtures containing copper tailings. Journal of Cleaner Production, 2021, 312, 127547.	9.3	12
36	Partitioning of copper at the confluences of Andean rivers. Chemosphere, 2020, 259, 127318.	8.2	11

Pablo A Pasten

#	Article	IF	CITATIONS
37	Evaluation of rapid methods for in-situ characterization of organic contaminant load and biodegradation rates in winery wastewater. Water Science and Technology, 2007, 56, 129-137.	2.5	8
38	Water Quality: Trends and Challenges. Global Issues in Water Policy, 2018, , 25-51.	0.1	8
39	Assessment of a conservative mixing model for the evaluation of constituent behavior below river confluences, Elqui River Basin, Chile. River Research and Applications, 2021, 37, 967-978.	1.7	7
40	Rusty river: Effects of tufa precipitation on sediment entrainment in the Estero Morales in the central Chilean Andes. Science of the Total Environment, 2019, 652, 822-835.	8.0	5
41	Chapter 15 Arsenic Speciation in Solid Phases of Geothermal Fields. Developments in Earth and Environmental Sciences, 2007, 7, 417-440.	0.1	3
42	Integrating Fluorescent Dye Flowâ€Curve Testing and Acoustic Doppler Velocimetry Profiling for In Situ Hydraulic Evaluation and Improvement of Clarifier Performance. Water Environment Research, 2010, 82, 675-685.	2.7	3
43	Chlorine Reduction Kinetics and its Mass Balance in Copper Premise Plumbing Systems During Corrosion Events. Materials, 2019, 12, 3676.	2.9	3
44	Settling of copper-rich suspended particles from acid drainage neutralization as a function of chemical composition and particle size distribution. Applied Geochemistry, 2022, 139, 105239.	3.0	3
45	Challenges and opportunities for drinking water treatment residuals (DWTRs) in metal-rich areas: an integrated approach. Environmental Science and Pollution Research, 2022, 29, 65599-65612.	5.3	3
46	Environmental Aspects of a Major ARD Source at El Indio Au-Cu-As District, North-Central Chile. Mine Water and the Environment, 2022, 41, 210-224.	2.0	2
47	A simple low ost approach for transport parameter determination in mountain rivers. River Research and Applications, 2022, 38, 173-181.	1.7	1