Chi-Huey Wong

List of Publications by Citations

Source: https://exaly.com/author-pdf/7162864/chi-huey-wong-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

168 33,366 435 99 h-index g-index citations papers 7.14 10.7 35,753 455 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
435	Broad neutralization coverage of HIV by multiple highly potent antibodies. <i>Nature</i> , 2011 , 477, 466-70	50.4	1164
434	Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 17033-8	11.5	949
433	Enzymes for chemical synthesis. <i>Nature</i> , 2001 , 409, 232-40	50.4	743
432	The Catalytic Asymmetric Aldol Reaction. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 1352-13	75 6.4	714
431	Programmable One-Pot Oligosaccharide Synthesis. <i>Journal of the American Chemical Society</i> , 1999 , 121, 734-753	16.4	697
430	A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. <i>Science</i> , 2011 , 334, 1097-103	33.3	576
429	Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. <i>Nature Immunology</i> , 2006 , 7, 978-86	19.1	521
428	Synthesis of sugar arrays in microtiter plate. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14397	7-4624	442
427	Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2300-2324	16.4	442
426	Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. <i>Chemical Reviews</i> , 2000 , 100, 4465-94	68.1	424
425	Toward automated synthesis of oligosaccharides and glycoproteins. <i>Science</i> , 2001 , 291, 2344-50	33.3	421
424	Selectinminus signCarbohydrate Interactions: From Natural Ligands to Designed Mimics. <i>Chemical Reviews</i> , 1998 , 98, 833-862	68.1	411
423	A potent and highly selective inhibitor of human alpha-1,3-fucosyltransferase via click chemistry. Journal of the American Chemical Society, 2003 , 125, 9588-9	16.4	402
422	Recent Advances in the Chemoenzymatic Synthesis of Carbohydrates and Carbohydrate Mimetics. <i>Chemical Reviews</i> , 1996 , 96, 443-474	68.1	382
421	Enzymes as Catalysts in Synthetic Organic Chemistry [New Synthetic Methods (53)]. <i>Angewandte Chemie International Edition in English</i> , 1985 , 24, 617-638		371
420	Small molecules targeting severe acute respiratory syndrome human coronavirus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10012-7	11.5	368
419	Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 12371-6	11.5	363

418	HIV-1 protease: mechanism and drug discovery. Organic and Biomolecular Chemistry, 2003, 1, 5-14	3.9	339
417	Metal catalyzed diazo transfer for the synthesis of azides from amines. <i>Tetrahedron Letters</i> , 1996 , 37, 6029-6032	2	303
416	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. <i>Cell</i> , 2016 , 165, 813-26	56.2	301
415	Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. <i>Immunity</i> , 2014 , 40, 657-68	32.3	286
414	Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 5736-63	16.4	280
413	Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 2614-9	11.5	273
412	Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11332-7	11.5	270
411	Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 13372-7	11.5	270
410	Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 3690-5	11.5	253
409	Observation of covalent intermediates in an enzyme mechanism at atomic resolution. <i>Science</i> , 2001 , 294, 369-74	33.3	251
408	1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. <i>ChemBioChem</i> , 2005 , 6, 1167-9	3.8	247
407	Glycans on influenza hemagglutinin affect receptor binding and immune response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 18137-42	11.5	240
406	Enzymes in Organic Synthesis: Application to the Problems of Carbohydrate Recognition (Part 2). <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 521-546		240
405	Enzymes in Organic Synthesis: Application to the Problems of Carbohydrate Recognition (Part 1). <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 412-432		232
404	The chemistry of amine-azide interconversion: catalytic diazotransfer and regioselective azide reduction. <i>Journal of the American Chemical Society</i> , 2002 , 124, 10773-8	16.4	231
403	Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. <i>Journal of the American Chemical Society</i> , 2007 , 129, 111	7 ¹⁶ 84	228
402	Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 3526-48	16.4	227
401	Toward automated oligosaccharide synthesis. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 118	7 269 23	215

400	Solid-Phase Chemical-Enzymic Synthesis of Glycopeptides and Oligosaccharides. <i>Journal of the American Chemical Society</i> , 1994 , 116, 1135-1136	16.4	215
399	Enzymes in the synthesis of glycoconjugates. <i>Chemical Reviews</i> , 2011 , 111, 4259-307	68.1	210
398	Design and Synthesis of New Aminoglycoside Antibiotics Containing Neamine as an Optimal Core Structure: Correlation of Antibiotic Activity with in Vitro Inhibition of Translation. <i>Journal of the American Chemical Society</i> , 1999 , 121, 6527-6541	16.4	206
397	Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 8161-6	11.5	204
396	Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 1351-6	11.5	203
395	Chemical selection for catalysis in combinatorial antibody libraries. <i>Science</i> , 1997 , 275, 945-8	33.3	197
394	Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. <i>Chemical Communications</i> , 2010 , 46, 21-43	5.8	196
393	Recent Advances in Aldolase-Catalyzed Asymmetric Synthesis. <i>Advanced Synthesis and Catalysis</i> , 2007 , 349, 1308-1320	5.6	196
392	Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15-20	11.5	195
391	A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 6263-70	8.3	193
390	Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. <i>Nature</i> , 1998 , 396, 92-6	50.4	189
389	Direct observation of aminoglycoside-RNA interactions by surface plasmon resonance. <i>Journal of the American Chemical Society</i> , 1997 , 119, 3641-8	16.4	186
388	The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 313	1-6 ⁵	181
387	Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. <i>Journal of Experimental Medicine</i> , 2005 , 202, 1517-26	16.6	170
386	Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 630-5	11.5	169
385	Covalent display of oligosaccharide arrays in microtiter plates. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8640-1	16.4	169
384	O-GlcNAcylation regulates EZH2 protein stability and function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1355-60	11.5	157
383	Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 8824-9	11.5	155

382	Protein glycosylation: new challenges and opportunities. <i>Journal of Organic Chemistry</i> , 2005 , 70, 4219-2	254.2	151
381	Unprecedented Asymmetric Aldol Reactions with Three Aldehyde Substrates Catalyzed by 2-Deoxyribose-5-phosphate Aldolase. <i>Journal of the American Chemical Society</i> , 1994 , 116, 8422-8423	16.4	150
380	Highly alpha-selective sialyl phosphate donors for efficient preparation of natural sialosides. <i>Chemistry - A European Journal</i> , 2010 , 16, 1754-60	4.8	143
379	A new strategy for the synthesis of glycoproteins. <i>Science</i> , 2004 , 303, 371-3	33.3	143
378	Anomeric reactivity-based one-pot oligosaccharide synthesis: a rapid route to oligosaccharide libraries. <i>Journal of Organic Chemistry</i> , 2000 , 65, 2410-31	4.2	143
377	Enzymatic Glycoprotein Synthesis: Preparation of Ribonuclease Glycoforms via Enzymatic Glycopeptide Condensation and Glycosylation. <i>Journal of the American Chemical Society</i> , 1997 , 119, 211	4-2418	3 ¹⁴²
376	Die katalysierte asymmetrische Aldolreaktion. <i>Angewandte Chemie</i> , 2000 , 112, 1406-1430	3.6	142
375	Emerging themes in medicinal glycoscience. <i>Nature Biotechnology</i> , 2000 , 18, 835-41	44.5	142
374	Glycan arrays: biological and medical applications. Current Opinion in Chemical Biology, 2008, 12, 86-92	9.7	140
373	Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. <i>Science</i> , 2011 , 331, 571-5	33.3	139
372	Intein-Mediated Synthesis of Proteins Containing Carbohydrates and Other Molecular Probes. Journal of the American Chemical Society, 2000 , 122, 5421-5428	16.4	139
371	A common glycan structure on immunoglobulin G for enhancement of effector functions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10611-6	11.5	137
370	Electrophilic Fluorination-Nucleophilic Addition Reaction Mediated by Selectfluor: Mechanistic Studies and New Applications. <i>Journal of Organic Chemistry</i> , 1999 , 64, 5264-5279	4.2	137
369	Specificity of aminoglycoside antibiotics for the A-site of the decoding region of ribosomal RNA. <i>Chemistry and Biology</i> , 1998 , 5, 397-406		134
368	Development of Globo-H cancer vaccine. Accounts of Chemical Research, 2015, 48, 643-52	24.3	133
367	A nanostructure-initiator mass spectrometry-based enzyme activity assay. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 3678-83	11.5	132
366	Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11661-6	11.5	131
365	A New Method for the Synthesis of Fluoro-Carbohydrates and Glycosides Using Selectfluor. <i>Journal of the American Chemical Society</i> , 1997 , 119, 11743-11746	16.4	129

364	Design of Bifunctional Antibiotics that Target Bacterial rRNA and Inhibit Resistance-Causing Enzymes. <i>Journal of the American Chemical Society</i> , 2000 , 122, 5230-5231	16.4	129
363	Enzymatic/Chemical Synthesis and Biological Evaluation of Seven-Membered Iminocyclitols. <i>Journal of the American Chemical Society</i> , 1996 , 118, 7647-7652	16.4	129
362	Anomeric reactivity-based one-pot synthesis of heparin-like oligosaccharides. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12795-800	16.4	125
361	Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D- and L-sugars. <i>Chemistry and Biology</i> , 2000 , 7, 873-83		125
360	Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 11667-72	11.5	124
359	Sugar-assisted glycopeptide ligation. <i>Journal of the American Chemical Society</i> , 2006 , 128, 5626-7	16.4	123
358	Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2517-22	11.5	122
357	A Library Approach to the Discovery of Small Molecules That Recognize RNA: Use of a 1,3-Hydroxyamine Motif as Core. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8319-8327	16.4	122
356	Reactivity-based one-pot total synthesis of fucose GM1 oligosaccharide: a sialylated antigenic epitope of small-cell lung cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 797-802	11.5	122
355	Assembly of Oligosaccharide Libraries with a Designed Building Block and an Efficient Orthogonal Protection Deprotection Strategy. <i>Journal of the American Chemical Society</i> , 1998 , 120, 7137-7138	16.4	122
354	D-Fructose-6-phosphate aldolase-catalyzed one-pot synthesis of iminocyclitols. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14811-7	16.4	121
353	Synthesis of the Globo H Hexasaccharide Using the Programmable Reactivity-Based One-Pot Strategy This research was supported by the National Institutes of Health. F.B. thanks the Deutsche Forschungsgemeinschaft for a fellowship <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 1274-1	16.4 277	121
352	Rapid diversity-oriented synthesis in microtiter plates for in situ screening of HIV protease inhibitors. <i>ChemBioChem</i> , 2003 , 4, 1246-8	3.8	119
351	Mechanism of human alpha-1,3-fucosyltransferase V: glycosidic cleavage occurs prior to nucleophilic attack. <i>Biochemistry</i> , 1997 , 36, 823-31	3.2	117
350	Mechanism and specificity of human alpha-1,3-fucosyltransferase V. <i>Biochemistry</i> , 1996 , 35, 11183-95	3.2	116
349	Sugar-assisted ligation in glycoprotein synthesis. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7690-701	16.4	114
348	Chemoenzymatic Solution- and Solid-Phase Synthesis of O-Glycopeptides of the Mucin Domain of MAdCAM-1. A General Route to O-Lac NAc, O-Sialyl-Lac NAc, and O-Sialyl-Lewis-X Peptides. <i>Journal of the American Chemical Society</i> , 1997 , 119, 8766-8776	16.4	112
347	Reactivity-based one-pot synthesis of oligomannoses: defining antigens recognized by 2G12, a broadly neutralizing anti-HIV-1 antibody. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1000-3	16.4	111

A method for the generation of glycoprotein mimetics. <i>Journal of the American Chemical Society</i> , 2003 , 125, 1702-3	16.4	111
New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2171-4	16.4	109
The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the Eglycosylation of Primary Hydroxy Groups. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 2900-29	9 0 3 ^{.4}	109
Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. <i>Chemistry and Biology</i> , 2010 , 17, 357-70		108
Chemoenzymatic Preparation of Novel Cyclic Imine Sugars and Rapid Biological Activity Evaluation Using Electrospray Mass Spectrometry and Kinetic Analysis. <i>Journal of the American Chemical Society</i> , 1997 , 119, 8146-8151	16.4	108
Chemoenzymatic synthesis of oligosaccharides and glycoproteins. <i>Trends in Biochemical Sciences</i> , 2004 , 29, 656-63	10.3	108
Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. <i>Bioorganic and Medicinal Chemistry</i> , 2000 , 8, 1937-46	3.4	106
Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. <i>Bioorganic and Medicinal Chemistry</i> , 2003 , 11, 43-52	3.4	103
Enzyme in der organischen Synthese. <i>Angewandte Chemie</i> , 1985 , 97, 617-638	3.6	102
Recombinant 2-Deoxyribose-5-phosphate Aldolase in Organic Synthesis: Use of Sequential Two-Substrate and Three-Substrate Aldol Reactions. <i>Journal of the American Chemical Society</i> , 1995 , 117, 3333-3339	16.4	101
A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. <i>Journal of Virology</i> , 2008 , 82, 6359-68	6.6	99
Rapid diversity-oriented synthesis in microtiter plates for in situ screening: discovery of potent and selective alpha-fucosidase inhibitors. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4661-4	16.4	97
Carbohydrate-Based Antibiotics: A New Approach to Tackling the Problem of Resistance. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 3508-3533	16.4	97
Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease. <i>Chemistry and Biology</i> , 2006 , 13, 261-8		96
Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 10202-7	11.5	95
Mimics of Complex Carbohydrates Recognized by Receptors. <i>Accounts of Chemical Research</i> , 1999 , 32, 376-385	24.3	93
Small Molecules as Structural and Functional Mimics of Sialyl Lewis X Tetrasaccharide in Selectin Inhibition: A Remarkable Enhancement of Inhibition by Additional Negative Charge and/or Hydrophobic Group. <i>Journal of the American Chemical Society</i> , 1997 , 119, 8152-8158	16.4	92
Novel five-membered iminocyclitol derivatives as selective and potent glycosidase inhibitors: new structures for antivirals and osteoarthritis. <i>ChemBioChem</i> , 2006 , 7, 165-73	3.8	92
	New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. <i>Angewandte Chemie - International Edition</i> , 2002, 41, 2171-4 The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the Edlycosylation of Primary Hydroxy Groups. <i>Angewandte Chemie - International Edition</i> , 2001, 40, 2900-29. Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. <i>Chemistry and Biology</i> , 2010, 17, 357-70 Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. <i>Chemistry and Biology</i> , 2010, 17, 357-70 Chemoenzymatic Preparation of Novel Cyclic Imine Sugars and Rapid Biological Activity Evaluation Using Electrospray Mass Spectrometry and Kinetic Analysis. <i>Journal of the American Chemical Society</i> , 1997, 119, 8146-8151 Chemoenzymatic synthesis of oligosaccharides and glycoproteins. <i>Trends in Biochemical Sciences</i> , 2004, 29, 656-63 Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. <i>Bioorganic and Medicinal Chemistry</i> , 2000, 8, 1937-46 Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. <i>Bioorganic and Medicinal Chemistry</i> , 2003, 11, 43-52 Enzyme in der organischen Synthese. <i>Angewandte Chemie</i> , 1985, 97, 617-638 Recombinant 2-Deoxyribose-5-phosphate Aldolase in Organic Synthesis: Use of Sequential Two Substrate and Three-Substrate Aldol Reactions. <i>Journal of the American Chemical Society</i> , 1995, 117, 3333-3339 Aglycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2012, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. <i>Journal of Virology</i> , 2008, 82, 6359-68 Rapid diversity-oriented synthesis in microtiter plates for in situ screening: discovery of potent and selective alpha-fucosidase inhibitors: A New Approach to Tackling the Proble	New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. Angewandte Chemie - International Edition, 2002, 41, 2171-4 16-4 The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the Ediycosylation of Primary Hydroxy Groups. Angewandte Chemie - International Edition, 2001, 40, 2900-29054 Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chemistry and Biology, 2010, 17, 357-70 Chemoenzymatic Preparation of Novel Cyclic Imine Sugars and Rapid Biological Activity Evaluation Using Electrospray Mass Spectrometry and Kinetic Analysis. Journal of the American Chemical Society, 1997, 119, 8146-8151 Chemoenzymatic synthesis of oligosaccharides and glycoproteins. Trends in Biochemical Sciences, 2004, 29, 656-63 Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. Bioorganic and Medicinal Chemistry, 2000, 8, 1937-46 Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorganic and Medicinal Chemistry, 2003, 11, 43-52 Enzyme in der organischen Synthese. Angewandte Chemie, 1985, 97, 617-638 3.6 Recombinant 2-Deoxyribose-5-phosphate Aldolase in Organic Synthesis: Use of Sequential Two-Substrate and Three-Substrate Aldol Reactions. Journal of the American Chemical Society, 1995, 117, 3333-3339 Alglycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2012, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. Journal of Virology, 2008, 82, 6359-68 Rapid diversity-oriented synthesis in microtiter plates for in situ screening: discovery of potent and selective alpha-fucosidase inhibitors. A New Approach to Tackling the Problem of Resistance. Angewandte Chemie - International Edition, 2003, 42, 4661-4 Carbohydrate-Based Antibiotics: A New Approach to Tackling the Pro

328	Cysteine-free peptide and glycopeptide ligation by direct aminolysis. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4411-5	16.4	88
327	Understanding the Chemistry and Biology of Glycosylation with Glycan Synthesis. <i>Annual Review of Biochemistry</i> , 2016 , 85, 599-630	29.1	88
326	Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic alpha, beta-unsaturated esters. <i>Bioorganic and Medicinal Chemistry</i> , 2005 , 13, 5240-52	3.4	87
325	Solution- and Solid-Phase Synthesis of Inhibitors of H. pylori Attachment and E-Selectin-Mediated Leukocyte Adhesion. <i>Journal of the American Chemical Society</i> , 1994 , 116, 11315-11322	16.4	87
324	Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies. <i>Chemistry - A European Journal</i> , 2008 , 14, 3620-9	4.8	86
323	Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. Journal of Immunology, 2006 , 176, 3625-34	5.3	84
322	Sugar-assisted ligation of N-linked glycopeptides with broad sequence tolerance at the ligation junction. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15026-33	16.4	84
321	High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2004 , 14, 3185-8	2.9	84
320	Reactivity-based one-pot synthesis of a Lewis Y carbohydrate hapten: a colon-rectal cancer antigen determinant. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 4087-90	16.4	83
319	EGlycosylation by D-glucosamine-derived donors: synthesis of heparosan and heparin analogues that interact with mycobacterial heparin-binding hemagglutinin. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8988-95	16.4	82
318	Extended sugar-assisted glycopeptide ligations: development, scope, and applications. <i>Journal of the American Chemical Society</i> , 2007 , 129, 13527-36	16.4	82
317	Saccharide display on microtiter plates. <i>Chemistry and Biology</i> , 2002 , 9, 713-20		81
316	Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides. <i>Journal of Organic Chemistry</i> , 2000 , 65, 5565-74	4.2	81
315	Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies. <i>Nature Chemistry</i> , 2016 , 8, 338-46	17.6	80
314	High-throughput identification of compounds targeting influenza RNA-dependent RNA polymerase activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 191	5 1 -6 ⁵	80
313	N-(phenylthio)-epsilon-caprolactam: a new promoter for the activation of thioglycosides. <i>Organic Letters</i> , 2004 , 6, 839-41	6.2	80
312	Kohlenhydratmimetika: ein neuer L\(\bar{B}\)ungsansatz f\(\bar{B}\)das Problem der kohlenhydratvermittelten biologischen Erkennung. <i>Angewandte Chemie</i> , 1999 , 111, 2446-2471	3.6	8o
311	Oligosaccharide Synthesis and Translational Innovation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3735-3754	16.4	79

(2004-2010)

310	Differential receptor binding affinities of influenza hemagglutinins on glycan arrays. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14849-56	16.4	79	
309	Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate-protein interactions. <i>Analytical Chemistry</i> , 2009 , 81, 7750-6	7.8	79	
308	Advances in glycoprotein synthesis. Chemical Communications, 2006, 21-33	5.8	79	
307	Chemoenzymatic approaches to glycoprotein synthesis. <i>Chemical Society Reviews</i> , 2007 , 36, 1227-38	58.5	78	
306	Sequential aldol condensation catalyzed by DERA mutant Ser238Asp and a formal total synthesis of atorvastatin. <i>Tetrahedron Letters</i> , 2004 , 45, 2439-2441	2	78	
305	Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2482-7	11.5	77	
304	Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9877-84	16.4	77	
303	An azido-BODIPY probe for glycosylation: initiation of strong fluorescence upon triazole formation. Journal of the American Chemical Society, 2014 , 136, 9953-61	16.4	76	
302	A programmable one-pot oligosaccharide synthesis for diversifying the sugar domains of natural products: a case study of vancomycin. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4657-60	16.4	76	
301	Efficient convergent synthesis of bi-, tri-, and tetra-antennary complex type N-glycans and their HIV-1 antigenicity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15382-91	16.4	74	
300	Hydroxyamines as a New Motif for the Molecular Recognition of Phosphodiesters: Implications for Aminogloycoside RNA Interactions. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 95-98		74	
299	Directed evolution of N-acetylneuraminic acid aldolase to catalyze enantiomeric aldol reactions. <i>Bioorganic and Medicinal Chemistry</i> , 2003 , 11, 2091-8	3.4	74	
298	Glycosylation of Threonine of the Repeating Unit of RNA Polymerase II with Linked N-Acetylglucosame Leads to a Turnlike Structure. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11567-11575	16.4	73	
297	A new multi-enzyme system for a one-pot synthesis of sialyl oligosaccharides: Combined use of Egalactosidase and £26)-sialyltransferase coupled with regeneration in situ of CMP-sialic acid. <i>Tetrahedron Letters</i> , 1993 , 34, 3091-3094	2	73	
296	Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14831-9	16.4	72	
295	Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6955-60	11.5	71	
294	Glycoprotein B7-H3 overexpression and aberrant glycosylation in oral cancer and immune response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13057-62	11.5	71	
293	Synthesis and high-throughput screening of N-acetyl-beta-hexosaminidase inhibitor libraries targeting osteoarthritis. <i>Journal of Organic Chemistry</i> , 2004 , 69, 6273-83	4.2	71	

292	One-pot synthesis of L-Fructose using coupled multienzyme systems based on rhamnulose-1-phosphate aldolase. <i>Journal of Organic Chemistry</i> , 2003 , 68, 6828-31	4.2	70
291	Second-generation sugar-assisted ligation: a method for the synthesis of cysteine-containing glycopeptides. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 5975-9	16.4	69
290	Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 6496-501	11.5	68
289	A new reactivity-based one-pot synthesis of N-acetyllactosamine oligomers. <i>Journal of Organic Chemistry</i> , 2003 , 68, 2135-42	4.2	68
288	Chemistry and glycobiology. Chemical Communications, 2011, 47, 6201-7	5.8	67
287	Regeneration of sugar nucleotide for enzymatic oligosaccharide synthesis. <i>Methods in Enzymology</i> , 1994 , 247, 107-27	1.7	66
286	Acyl and silyl group effects in reactivity-based one-pot glycosylation: synthesis of embryonic stem cell surface carbohydrates Lc4 and IV(2)Fuc-Lc4. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4549-52	16.4	61
285	Design of Small Molecules That Recognize RNA: Development of Aminoglycosides as Potential Antitumor Agents That Target Oncogenic RNA Sequences This work was supported by the NIH. We thank Professor Peter Voght for his suggestion of the oncogenic RNA sequences as targets.	16.4	61
284	Effects of neighboring glycans on antibody-carbohydrate interaction. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1608-12	16.4	60
283	E339R416 salt bridge of nucleoprotein as a feasible target for influenza virus inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2011 , 108, 16515-20	11.5	60
282	A quick diversity-oriented amide-forming reaction to optimize P-subsite residues of HIV protease inhibitors. <i>Chemistry and Biology</i> , 2002 , 9, 891-6		60
281	Novel efficient routes to heparin monosaccharides and disaccharides achieved via regio- and stereoselective glycosidation. <i>Organic Letters</i> , 2004 , 6, 723-6	6.2	60
2 80	Efficient and stereoselective synthesis of (卫-角) oligosialic acids: from monomers to dodecamers. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9391-5	16.4	59
279	An O-glycoside of sialic acid derivative that inhibits both hemagglutinin and sialidase activities of influenza viruses. <i>Glycobiology</i> , 2002 , 12, 183-90	5.8	59
278	Sequential One-Pot Aldol Reactions Catalyzed by 2-Deoxyribose-5-phosphate Aldolase and Fructose-1,6-diphosphate Aldolase. <i>Journal of the American Chemical Society</i> , 1995 , 117, 2947-2948	16.4	59
277	Reactivity-based one-pot synthesis of the tumor-associated antigen N3 minor octasaccharide for the development of a photocleavable DIOS-MS sugar array. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2753-7	16.4	58
276	Microtiter plate based chemistry and in situ screening: a useful approach for rapid inhibitor discovery. <i>Organic and Biomolecular Chemistry</i> , 2006 , 4, 1446-57	3.9	58
275	Solid-phase synthesis of oligosaccharides and on-resin quantitative monitoring using gated decoupling (13)C NMR. <i>Journal of the American Chemical Society</i> , 2002 , 124, 3591-9	16.4	58

(2000-2000)

274	Syntheses of C-3-Modified Sialylglycosides as Selective Inhibitors of Influenza Hemagglutinin and Neuraminidase. <i>European Journal of Organic Chemistry</i> , 2000 , 2000, 2643-2653	3.2	58	
273	Glycan array on aluminum oxide-coated glass slides through phosphonate chemistry. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13371-80	16.4	57	
272	Dual effect of synthetic aminoglycosides: antibacterial activity against Bacillus anthracis and inhibition of anthrax lethal factor. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 447-52	16.4	57	
271	A Versatile Synthetic Strategy for the Preparation and Discovery of New Iminocyclitols as Inhibitors of Glycosidases. <i>Journal of Organic Chemistry</i> , 1999 , 64, 5280-5291	4.2	57	
270	Concise synthesis of iminocyclitols via Petasis-type aminocyclization. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8352-3	16.4	56	
269	Programmable reactivity-based one-pot oligosaccharide synthesis. <i>Nature Protocols</i> , 2006 , 1, 3143-52	18.8	56	
268	Borate as a Phosphate Ester Mimic in Aldolase-Catalyzed Reactions: Practical Synthesis of L-Fructose and L-Iminocyclitols. <i>Advanced Synthesis and Catalysis</i> , 2006 , 348, 2555-2559	5.6	56	
267	A general strategy toward S-linked glycopeptides. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4596-9	16.4	56	
266	Hexosaminidase inhibitors as new drug candidates for the therapy of osteoarthritis. <i>Chemistry and Biology</i> , 2001 , 8, 701-11		56	
265	Cell-wall engineering of living bacteria. <i>Journal of the American Chemical Society</i> , 2002 , 124, 9018-9	16.4	56	
264	New development of glycan arrays. Organic and Biomolecular Chemistry, 2009, 7, 2247-54	3.9	55	
263	High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. <i>Bioorganic and Medicinal Chemistry</i> , 2010 , 18, 8512-29	3.4	55	
262	Sugar-assisted glycopeptide ligation with complex oligosaccharides: scope and limitations. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11945-52	16.4	55	
261	Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 431-6	11.5	55	
260	Directed evolution of D-sialic acid aldolase to L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 913	2 1 165	55	
259	Cell-permeable probe for identification and imaging of sialidases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2466-71	11.5	54	
258	Three-step synthesis of sialic acids and derivatives. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 7417-21	16.4	54	
257	Chemoenzymatic Synthesis of a PSGL-1 N-Terminal Glycopeptide Containing Tyrosine Sulfate and ⊞O-Linked Sialyl Lewis X. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4241-4242	16.4	54	

256	Antibacterial cyclic D,L-alpha-glycopeptides. Chemical Communications, 2009, 3693-5	5.8	53
255	A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. <i>Immunity</i> , 2018 , 48, 500-513.e6	32.3	51
254	Exploitation of Subtilisin BPNI Catalyst for the Synthesis of Peptides Containing Noncoded Amino Acids, Peptide Mimetics and Peptide Conjugates. <i>Journal of the American Chemical Society</i> , 1997 , 119, 3942-3947	16.4	51
253	Discovery of picomolar slow tight-binding inhibitors of alpha-fucosidase. <i>Chemistry and Biology</i> , 2004 , 11, 1301-6		51
252	Homogenous Enzymatic Synthesis Using a Thermo-Responsive Water-Soluble Polymer Support. <i>Advanced Synthesis and Catalysis</i> , 2001 , 343, 675-681	5.6	51
251	Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 720-725	11.5	50
250	N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability. <i>Biopolymers</i> , 2012 , 98, 195-211	2.2	49
249	Convergent glycopeptide synthesis by traceless Staudinger ligation and enzymatic coupling. <i>ChemBioChem</i> , 2006 , 7, 429-32	3.8	49
248	Aldolase-catalyzed asymmetric synthesis of novel pyranose synthons as a new entry to heterocycles and epothilones. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 1404-7	16.4	49
247	Synthesis and evaluation of transition-state analogue inhibitors of alpha-1,3-fucosyltransferase. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3041-4	16.4	49
246	Enzymic Synthesis of Hyaluronic Acid with Regeneration of Sugar Nucleotides. <i>Journal of the American Chemical Society</i> , 1995 , 117, 5869-5870	16.4	49
245	Enzymic Synthesis and Regeneration of 3SPhosphoadenosine 5SPhosphosulfate (PAPS) for Regioselective Sulfation of Oligosaccharides. <i>Journal of the American Chemical Society</i> , 1995 , 117, 8031-	£632	49
244	Auf dem Weg zur automatisierten Oligosaccharid- Synthese. <i>Angewandte Chemie</i> , 2011 , 123, 12076-121	39 6	47
243	Influenza A surface glycosylation and vaccine design. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 280-285	11.5	46
242	An Efficient Modular One-Pot Synthesis of Heparin-Based Anticoagulant Idraparinux. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10309-10314	16.4	46
241	Samarium Diiodide Mediated Coupling of Glycosyl Phosphates with Carbon Radical or Anion Acceptors Bynthesis of C-Glycosides. <i>Angewandte Chemie International Edition in English</i> , 1996 , 35, 2671-	2674	46
240	Development of oseltamivir phosphonate congeners as anti-influenza agents. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 8657-70	8.3	44
239	Hierarchical and programmable one-pot synthesis of oligosaccharides. <i>Nature Communications</i> , 2018 , 9, 5202	17.4	44

238	Programmable one-pot synthesis of heparin pentasaccharides enabling access to regiodefined sulfate derivatives. <i>Chemical Science</i> , 2018 , 9, 6685-6691	9.4	43	
237	Chemoenzymatic synthesis of PSGL-1 glycopeptides: sulfation on tyrosine affects glycosyltransferase-catalyzed synthesis of the O-glycan. <i>Bioorganic and Medicinal Chemistry</i> , 2000 , 8, 1017-25	3.4	43	
236	An efficient synthesis of CMP-3-fluoroneuraminic acid. <i>Chemical Communications</i> , 1999 , 1525-1526	5.8	43	
235	Stage-specific embryonic antigen-3 (SSEA-3) and BGalT5 are cancer specific and significant markers for breast cancer stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 960-5	11.5	42	
234	Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2476-81	11.5	42	
233	Immunogenicity study of Globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16844-53	16.4	42	
232	Synthesis of Neisseria meningitidis serogroup W135 capsular oligosaccharides for immunogenicity comparison and vaccine development. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 9157-61	16.4	42	
231	Synthesis and evaluation of a new fluorescent transglycosylase substrate: lipid II-based molecule possessing a dansyl-C20 polyprenyl moiety. <i>Organic Letters</i> , 2010 , 12, 1608-11	6.2	42	
230	Synthesis and vaccine evaluation of the tumor-associated carbohydrate antigen RM2 from prostate cancer. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11140-50	16.4	41	
229	Strategies for the preparation of homogenous glycoproteins. <i>Current Opinion in Chemical Biology</i> , 2006 , 10, 638-44	9.7	41	
228	Solution- and Solid-Phase Synthesis of N-Protected Glycopeptide Esters of the Benzyl Type as Substrates for Subtilisin-Catalyzed Glycopeptide Couplings. <i>Journal of the American Chemical Society</i> , 1998 , 120, 1979-1989	16.4	41	
227	Ligand Recognition by E- and P-Selectin: Chemoenzymatic Synthesis and Inhibitory Activity of Bivalent Sialyl Lewis x Derivatives and Sialyl Lewis x Carboxylic Acids. <i>Journal of Organic Chemistry</i> , 1998 , 63, 5137-5143	4.2	41	
226	Chemoenzymatic synthesis of sialyl-trimeric-Lewis x. <i>Chemistry - A European Journal</i> , 2000 , 6, 1243-51	4.8	41	
225	Macrolactamization of glycosylated peptide thioesters by the thioesterase domain of tyrocidine synthetase. <i>Chemistry and Biology</i> , 2004 , 11, 1635-42		39	
224	Asymmetric Aldol Reactions Using Aldolases. <i>Topics in Stereochemistry</i> , 2003 , 267-342		39	
223	Combinatorial library of five-membered iminocyclitol and the inhibitory activities against glyco-enzymes. <i>Chemistry and Biology</i> , 2001 , 8, 1061-70		39	
222	A potent and highly selective sulfotransferase inhibitor. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14524-5	16.4	39	
221	The Dependence of Carbohydrate-Aromatic Interaction Strengths on the Structure of the Carbohydrate. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7636-48	16.4	38	

220	Sugar-assisted ligation for the synthesis of glycopeptides. Chemistry - A European Journal, 2007, 13, 567	′0 _‡ .§	38
219	Synthesis and evaluation of general mechanism-based inhibitors of sulfatases based on (difluoro)methyl phenyl sulfate and cyclic phenyl sulfamate motifs. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 8386-95	3.4	38
218	Combinatorial approach toward synthesis of small molecule libraries as bacterial transglycosylase inhibitors. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 2586-93	3.9	37
217	A new strategy for the cloning, overexpression and one step purification of three DHAP-dependent aldolases: rhamnulose-1-phosphate aldolase, fuculose-1-phosphate aldolase and tagatose-1,6-diphosphate aldolase. <i>Bioorganic and Medicinal Chemistry</i> , 1995 , 3, 945-53	3.4	37
216	A new synthetic approach toward bacterial transglycosylase substrates, Lipid II and Lipid IV. <i>Organic Letters</i> , 2011 , 13, 4600-3	6.2	36
215	Inhibition of the proteolytic activity of anthrax lethal factor by aminoglycosides. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4774-5	16.4	36
214	-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7302-	7307	36
213	Quantitative Monitoring of Solid-Phase Synthesis Using Gated Decoupling C NMR Spectroscopy with a C-Enriched Protecting Group and an Internal Standard in the Synthesis of Sialyl Lewis Tetrasaccharide. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 3415-3418	16.4	35
212	Tyrosine Sulfation on a PSGL-1 Glycopeptide Influences the Reactivity of Glycosyltransferases Responsible for Synthesis of the Attached O-Glycan. <i>Journal of the American Chemical Society</i> , 2000 , 122, 742-743	16.4	35
211	A Practical Method for the Synthesis of N-Acetyl-D-lactosamine Derivatives by the Tandem Use of Galactose Oxidase and EGalactosidase. <i>Angewandte Chemie International Edition in English</i> , 1996 , 35, 2348-2350		35
210	Problems of Acyl Migration in Lipase-Catalyzed Enantioselecttve Transformation of Meso-1,3-Diol Systems. <i>Biocatalysis</i> , 1990 , 3, 169-177		35
209	Enzymatic synthesis of lipid II and analogues. Angewandte Chemie - International Edition, 2014, 53, 8060	-5 6.4	34
208	Programmable one-pot glycosylation. <i>Topics in Current Chemistry</i> , 2011 , 301, 223-52		33
207	Synthesis of Glycans from the Glycodelins: Two Undeca-, Two Deca-, Three Nona-, an Octa- and a Heptasaccharide. <i>Chemistry - A European Journal</i> , 1999 , 5, 3326-3340	4.8	33
206	Enzymatic Regeneration of 3SPhosphoadenosine-5SPhosphosulfate Using Aryl Sulfotransferase for the Preparative Enzymatic Synthesis of Sulfated Carbohydrates. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2747-2750	16.4	33
205	Conversion of the carboxy group of sialic acid donors to a protectedhydroxymethyl group yields an efficient reagent for the synthesis of the unnaturalbeta-linkage. <i>Chemical Communications</i> , 2001 , 974-9	75 ⁸	32
204	A continuous assay for the spectrophotometric analysis of sulfotransferases using aryl sulfotransferase IV. <i>Analytical Biochemistry</i> , 1999 , 274, 131-7	3.1	32
203	Signaling pathway of globo-series glycosphingolipids and 🛚 1,3-galactosyltransferase V (BGalT5) in breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 3518-3523	11.5	31

202	Why is CMP-ketodeoxyoctonate highly unstable?. <i>Biochemistry</i> , 1997 , 36, 780-5	3.2	31
201	Rapid discovery of potent sulfotransferase inhibitors by diversity-oriented reaction in microplates followed by in situ screening. <i>ChemBioChem</i> , 2004 , 5, 811-9	3.8	30
200	Synthesis of solid-supported mirror-image sugars: a novel method for selecting receptors for cellular-surface carbohydrates. <i>ChemBioChem</i> , 2001 , 2, 741-6	3.8	30
199	New continuous fluorometric assay for bacterial transglycosylase using FEster resonance energy transfer. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17078-89	16.4	29
198	Desorption ionization of biomolecules on metals. <i>Analytical Chemistry</i> , 2008 , 80, 5203-10	7.8	29
197	In vivo selection for the directed evolution of L-rhamnulose aldolase from L-rhamnulose-1-phosphate aldolase (RhaD). <i>Bioorganic and Medicinal Chemistry</i> , 2007 , 15, 5905-11	3.4	29
196	Aminoglycoside array for the high-throughput analysis of small molecule R NA interactions. <i>Tetrahedron Letters</i> , 2004 , 45, 3639-3642	2	29
195	Tetrabutylammonium fluoride-assisted rapid N9-alkylation on purine ring: application to combinatorial reactions in microtiter plates for the discovery of potent sulfotransferase inhibitors in situ. <i>Bioorganic and Medicinal Chemistry</i> , 2005 , 13, 4622-6	3.4	29
194	Identification of novel anthrax lethal factor inhibitors generated by combinatorial Pictet-Spengler reaction followed by screening in situ. <i>ChemBioChem</i> , 2005 , 6, 1002-6	3.8	29
193	An efficient chemoenzymatic strategy for the synthesis of wild-type and vancomycin-resistant bacterial cell-wall precursors: UDP-N-acetylmuramyl-peptides. <i>Journal of the American Chemical Society</i> , 2001 , 123, 9916-7	16.4	29
192	Engineering Enzymes for Bioorganic Synthesis: Peptide Bond Formation. <i>Biotechnology Progress</i> , 1996 , 12, 423-433	2.8	29
191	Remarkable Stereoselectivity in the Inhibition of EGalactosidase from Coffee Bean by a New Polyhydroxypyrrolidine Inhibitor. <i>Angewandte Chemie International Edition in English</i> , 1994 , 33, 1242-12	244	29
190	Chemical constituents of Plectranthus amboinicus and the synthetic analogs possessing anti-inflammatory activity. <i>Bioorganic and Medicinal Chemistry</i> , 2014 , 22, 1766-72	3.4	28
189	Substrate Preference and Interplay of Fucosyltransferase® and N-Acetylglucosaminyltransferases. Journal of the American Chemical Society, 2017, 139, 9431-9434	16.4	28
188	Reactivity-Based One-Pot Synthesis of a Lewis Y Carbohydrate Hapten: A Colon R ectal Cancer Antigen Determinant. <i>Angewandte Chemie</i> , 2002 , 114, 4261-4264	3.6	28
187	Mechanistic studies of beta-arylsulfotransferase IV. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 910-5	11.5	28
186	Synthesis of the Globo H Hexasaccharide Using the Programmable Reactivity-Based One-Pot Strategy. <i>Angewandte Chemie</i> , 2001 , 113, 1314-1317	3.6	28
185	Viral evolution in response to the broad-based retroviral protease inhibitor TL-3. <i>Journal of Virology</i> , 2001 , 75, 9502-8	6.6	28

184	Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease. <i>Journal of Virology</i> , 2000 , 74, 4710-20	6.6	28
183	Synthesis of Sialidase-Resistant Oligosaccharide and Antibody Glycoform Containing 2,6-Linked 3F-Neu5Ac. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6484-6488	16.4	27
182	Unprecedented Role of Hybrid N-Glycans as Ligands for HIV-1 Broadly Neutralizing Antibodies. Journal of the American Chemical Society, 2018 , 140, 5202-5210	16.4	27
181	Development of trifunctional probes for glycoproteomic analysis. <i>Chemical Communications</i> , 2010 , 46, 5575-7	5.8	27
180	Probing Glycans With the Copper(I)-Catalyzed [3+2] AzideAlkyne Cycloaddition. <i>QSAR and Combinatorial Science</i> , 2007 , 26, 1243-1252		27
179	Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 445-52	4.5	27
178	A strategy for the one-pot synthesis of sialylated oligosaccharides. <i>Canadian Journal of Chemistry</i> , 2002 , 80, 1051-1054	0.9	27
177	Structural studies of FIV and HIV-1 proteases complexed with an efficient inhibitor of FIV protease. <i>Proteins: Structure, Function and Bioinformatics</i> , 2000 , 38, 29-40	4.2	27
176	Targeting RNAs with tobramycin analogues. Angewandte Chemie - International Edition, 2004, 43, 6496-	5 06 .4	26
175	Synthesis of lactosamine derivatives using Ed-galactosidase from Bacillus circulans. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1996 , 6, 1123-1126	2.9	26
174	Recombinant Whole Cells as Catalysts for the Enzymatic Synthesis of Oligosaccharides and Glycopeptides. <i>Angewandte Chemie International Edition in English</i> , 1994 , 33, 1241-1242		26
173	An Effective Bacterial Fucosidase for Glycoprotein Remodeling. ACS Chemical Biology, 2017 , 12, 63-72	4.9	25
172	Cysteine-Free Peptide and Glycopeptide Ligation by Direct Aminolysis. <i>Angewandte Chemie</i> , 2008 , 120, 4483-4487	3.6	25
171	The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the Eglycosylation of Primary Hydroxy Groups. <i>Angewandte Chemie</i> , 2001 , 113, 2984-2987	3.6	25
170	Programmable One-Pot Synthesis of Heparin Pentasaccharide Fondaparinux. <i>Organic Letters</i> , 2020 , 22, 4638-4642	6.2	24
169	Enhanced anti-influenza agents conjugated with anti-inflammatory activity. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 8493-501	8.3	24
168	Breaking the low barrier hydrogen bond in a serine protease. <i>Protein Science</i> , 1999 , 8, 410-7	6.3	24
167	Assembly of sugars on polystyrene plates: a new facile microarray fabrication technique. <i>Tetrahedron Letters</i> , 2004 , 45, 2689-2692	2	24

166	Model system for high-throughput screening of novel human immunodeficiency virus protease inhibitors in Escherichia coli. <i>Antimicrobial Agents and Chemotherapy</i> , 2004 , 48, 2437-47	5.9	24
165	Acceptor specificity and inhibition of the bacterial cell-wall glycosyltransferase MurG. <i>ChemBioChem</i> , 2003 , 4, 603-9	3.8	24
164	Tamiphosphor monoesters as effective anti-influenza agents. <i>European Journal of Medicinal Chemistry</i> , 2014 , 81, 106-18	6.8	22
163	Glycan arrays on aluminum-coated glass slides. <i>Chemistry - an Asian Journal</i> , 2008 , 3, 1395-405	4.5	22
162	Iminosugar C-glycoside analogues of ED-GlcNAc-1-phosphate: synthesis and bacterial transglycosylase inhibition. <i>Journal of Organic Chemistry</i> , 2014 , 79, 8629-37	4.2	21
161	Effect of the peptide moiety of Lipid II on bacterial transglycosylase. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10123-6	16.4	21
160	Opening of thiiranes: preparation of orthogonal protected 2-thioglyceraldehyde. <i>Journal of Organic Chemistry</i> , 2001 , 66, 910-4	4.2	21
159	Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies. <i>Chemical Communications</i> , 2018 , 54, 6161-6164	5.8	21
158	Crystal Structure of a Homogeneous IgG-Fc Glycoform with the N-Glycan Designed to Maximize the Antibody Dependent Cellular Cytotoxicity. <i>ACS Chemical Biology</i> , 2017 , 12, 1335-1345	4.9	20
157	Investigation of SSEA-4 binding protein in breast cancer cells. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5934-7	16.4	20
156	Chemical, Enzymatic and Structural Studies in Molecular Glycobiology. <i>Liebigs Annalen</i> , 1997 , 1997, 105	59-1074	1 20
155	Synthesis of N-acetyllactosamine derivatives with variation in the aglycon moiety for the study of inhibition of sialyl Lewis x expression. <i>ChemBioChem</i> , 2003 , 4, 835-40	3.8	20
154	Purine-Type Compounds Induce Microtubule Fragmentation and Lung Cancer Cell Death through Interaction with Katanin. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 8521-34	8.3	19
153	A Programmable One-Pot Oligosaccharide Synthesis for Diversifying the Sugar Domains of Natural Products: A Case Study of Vancomycin. <i>Angewandte Chemie</i> , 2003 , 115, 4805-4808	3.6	19
152	Synthesis of N-acetylglucosamine thiazoline/lipid II hybrids. <i>Tetrahedron Letters</i> , 2001 , 42, 615-618	2	19
151	Altered gag polyprotein cleavage specificity of feline immunodeficiency virus/human immunodeficiency virus mutant proteases as demonstrated in a cell-based expression system. <i>Journal of Virology</i> , 2006 , 80, 7832-43	6.6	18
150	Rapid Preparation of Glycolipid Libraries by Cross Metathesis. <i>Advanced Synthesis and Catalysis</i> , 2002 , 344, 622	5.6	18
149	Tetrabutylammonium fluoride-mediated rapid alkylation reaction in microtiter plates for the discovery of enzyme inhibitors in situ. <i>ChemBioChem</i> , 2005 , 6, 2176-80	3.8	18

148	Egg-based influenza split virus vaccine with monoglycosylation induces cross-strain protection against influenza virus infections. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 4200-4205	11.5	18
147	Zuckervermittelte Peptidverknßfung der zweiten Generation: eine Methode zur Synthese von cysteinhaltigen Glycopeptiden. <i>Angewandte Chemie</i> , 2007 , 119, 6079-6083	3.6	17
146	Directed evolution of aldolases. <i>Methods in Enzymology</i> , 2004 , 388, 224-38	1.7	17
145	Chemoenzymatic synthesis and fluorescent visualization of cell-surface selectin-bound sialyl Lewis x derivatives. <i>Chemistry - A European Journal</i> , 2000 , 6, 162-71	4.8	17
144	Probing the inhibition of leukotriene A4 hydrolase based on its aminopeptidase activity. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1991 , 1, 551-556	2.9	17
143	Exploring human glycosylation for better therapies. <i>Molecular Aspects of Medicine</i> , 2016 , 51, 125-43	16.7	17
142	New Methods for Proteomic Research: Preparation of Proteins with N-Terminal Cysteines for Labeling and Conjugation. <i>Angewandte Chemie</i> , 2002 , 114, 2275	3.6	16
141	Chemoenzymatic synthesis of L-galactosylated dimeric sialyl Lewis X structures employing alpha-1,3-fucosyltransferase V. <i>Bioorganic and Medicinal Chemistry</i> , 2000 , 8, 2519-25	3.4	16
140	Affinity-Based Screen for Inhibitors of Bacterial Transglycosylase. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2752-2755	16.4	15
139	Development of bacterial transglycosylase inhibitors as new antibiotics: moenomycin A treatment for drug-resistant Helicobacter pylori. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2014 , 24, 2412-4	2.9	15
138	Programmable one-pot synthesis of tumor-associated carbohydrate antigens Lewis X dimer and KH-1 epitopes. <i>Tetrahedron Letters</i> , 2011 , 52, 2132-2135	2	15
137	Probing the Activities and Mechanisms of Leukotriene A4 Hydrolase with Synthetic Inhibitors. <i>Chemistry - A European Journal</i> , 1998 , 4, 1698-1713	4.8	15
136	Sulfotransferasen: Struktur, Mechanismus, biologische AktivitE, Inhibierung, Anwendung in Synthesen. <i>Angewandte Chemie</i> , 2004 , 116, 3610-3632	3.6	15
135	Randomized phase II/III trial of active immunotherapy with OPT-822/OPT-821 in patients with metastatic breast cancer <i>Journal of Clinical Oncology</i> , 2016 , 34, 1003-1003	2.2	15
134	Residues Comprising the Enhanced Aromatic Sequon Influence Protein N-Glycosylation Efficiency. Journal of the American Chemical Society, 2017 , 139, 12947-12955	16.4	14
133	Glucosamine-6-sulfamate analogues of heparan sulfate as inhibitors of endosulfatases. <i>ChemBioChem</i> , 2010 , 11, 2393-7	3.8	14
132	Surface plasmon resonance study of RNA-aminoglycoside interactions. <i>Methods in Enzymology</i> , 2003 , 362, 340-53	1.7	14
131	Reactivity-Based One-Pot Synthesis of Oligomannoses: Defining Antigens Recognized by 2G12, a Broadly Neutralizing Anti-HIV-1 Antibody. <i>Angewandte Chemie</i> , 2004 , 116, 1018-1021	3.6	14

130	Microbial Sialyltransferases for Carbohydrate Synthesis <i>Trends in Glycoscience and Glycotechnology</i> , 2001 , 13, 345-360	0.1	14	
129	Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12413-12423	16.4	14	
128	Programmable One-Pot Synthesis of Oligosaccharides. <i>Biochemistry</i> , 2020 , 59, 3078-3088	3.2	14	
127	Effects of Neighboring Glycans on Antibody©arbohydrate Interaction. <i>Angewandte Chemie</i> , 2011 , 123, 1646-1650	3.6	13	
126	The Synthesis of Novel 6-Amido-6-Deoxy-L-Galactose Derivatives as Potent Sialyl Lewisx Mimetics. <i>Angewandte Chemie International Edition in English</i> , 1996 , 35, 2346-2348		13	
125	A cell-permeable and triazole-forming fluorescent probe for glycoconjugate imaging in live cells. <i>Chemical Communications</i> , 2017 , 53, 1490-1493	5.8	12	
124	Colocalization of a CD1d-Binding Glycolipid with a Radiation-Attenuated Sporozoite Vaccine in Lymph Node-Resident Dendritic Cells for a Robust Adjuvant Effect. <i>Journal of Immunology</i> , 2015 , 195, 2710-21	5.3	12	
123	Efficient and Stereoselective Synthesis of (卫-良) Oligosialic Acids: From Monomers to Dodecamers. <i>Angewandte Chemie</i> , 2011 , 123, 9563-9567	3.6	12	
122	Epoxide opening in water and screening in situ for rapid discovery of enzyme inhibitors in microtiter plates. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 1058-62	3.4	12	
121	A Synthetic Retrotransition (Backward Reading) Sequence of the Right-Handed Three-Helix Bundle Domain (10-53) of Protein A Shows Similarity in Confomation as Predicted by Computation. <i>Journal of the American Chemical Society</i> , 1998 , 120, 13042-13045	16.4	12	
120	Cloning and Overexpression of a Tagged CMP-N-Acetylneuraminic Acid Synthetase from E. coli Using a Lambda Phage System and Application of the Enzyme to the Synthesis of CMP-N-Acetylneuraminic Acid. <i>Biocatalysis</i> , 1992 , 6, 31-42		12	
119	Autoreactivity to Sulfatide by Human Invariant NKT Cells. <i>Journal of Immunology</i> , 2017 , 199, 97-106	5.3	11	
118	Asymmetric epoxidation of allyl alcohol derivatives by Ehydroxylase from Pseudomonas oleovorans. <i>Recueil Des Travaux Chimiques Des Pays-Bas</i> , 2010 , 110, 167-170		11	
117	Glycosylated Natural Products 2005 , 685-711		11	
116	Conjugation of glycopeptide thioesters to expressed protein fragments: semisynthesis of glycosylated interleukin-2. <i>Methods in Molecular Biology</i> , 2004 , 283, 255-66	1.4	11	
115	Enzymatic Synthesis of Chiral Hydroxy Compounds Using Immobilized Glucose Dehydrogenase from Bacillus cereus for NAD(P)H Regeneration. <i>Nature Biotechnology</i> , 1985 , 3, 649-651	44.5	11	
114	Development of a universal influenza vaccine using hemagglutinin stem protein produced from Pichia pastoris. <i>Virology</i> , 2019 , 526, 125-137	3.6	11	
113	Characterization of a transglycosylase domain of Streptococcus pneumoniae PBP1b. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 7187-95	3.4	10	

112	Undecaprenyl Phosphate Phosphatase Activity of Undecaprenol Kinase Regulates the Lipid Pool in Gram-Positive Bacteria. <i>Biochemistry</i> , 2017 , 56, 5417-5427	3.2	9
111	Hydroxyamine als neues Motiv f⊡die molekulare Erkennung von Phosphodiestern: Hinweise auf Aminoglycosid-RNA-Wechselwirkungen. <i>Angewandte Chemie</i> , 1997 , 109, 119-122	3.6	9
110	Enzymatic Synthesis of Glycopeptides and Glycoproteins 2006 , 37-63		9
109	Dual Effect of Synthetic Aminoglycosides: Antibacterial Activity against Bacillus anthracis and Inhibition of Anthrax Lethal Factor. <i>Angewandte Chemie</i> , 2005 , 117, 451-456	3.6	9
108	Design of Small Molecules That Recognize RNA: Development of Aminoglycosides as Potential Antitumor Agents That Target Oncogenic RNA Sequences. <i>Angewandte Chemie</i> , 2000 , 112, 1122-1126	3.6	9
107	Chimeric hemagglutinin vaccine elicits broadly protective CD4 and CD8 T cell responses against multiple influenza strains and subtypes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 17757-17763	11.5	9
106	Chemo-enzymatic Approach to Carbohydrate Recognition. <i>Current Organic Chemistry</i> , 1997 , 1, 109-126	1.7	9
105	Free-electron-laser coherent diffraction images of individual drug-carrying liposome particles in solution. <i>Nanoscale</i> , 2018 , 10, 2820-2824	7.7	8
104	Targeting the Bacterial Transglycosylase: Antibiotic Development from a Structural Perspective. <i>ACS Infectious Diseases</i> , 2019 , 5, 1493-1504	5.5	8
103	Evaluation of sulfatase-directed quinone methide traps for proteomics. <i>Bioorganic and Medicinal Chemistry</i> , 2012 , 20, 622-7	3.4	8
102	Recent Advances in Aldolase-Catalyzed Synthesis of Unnatural Sugars and Iminocyclitols. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2008 , 66, 605-615	0.2	8
101	Evaluation of RNA-binding specificity of aminoglycosides with DNA microarrays. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 12311-6	11.5	8
100	Sugar arrays in microtiter plates. <i>Methods in Enzymology</i> , 2003 , 362, 218-25	1.7	8
99	Rapid Diversity-Oriented Synthesis in Microtiter Plates for In Situ Screening: Discovery of Potent and Selective Fucosidase Inhibitors. <i>Angewandte Chemie</i> , 2003 , 115, 4809-4812	3.6	8
98	Practical Remdesivir Synthesis through One-Pot Organocatalyzed Asymmetric ()-P-Phosphoramidation. <i>Journal of Organic Chemistry</i> , 2021 , 86, 4977-4985	4.2	8
97	Synthesis of Neisseria meningitidis Serogroup W135 Capsular Oligosaccharides for Immunogenicity Comparison and Vaccine Development. <i>Angewandte Chemie</i> , 2013 , 125, 9327-9331	3.6	7
96	Design of Disaccharide Modules for a Programmable One-Pot Synthesis of Building Blocks with LacNAc Repeating Units for Asymmetric N-Glycans. <i>Asian Journal of Organic Chemistry</i> , 2017 , 6, 1800-18	197	7
95	Reactivity-Based One-Pot Synthesis of the Tumor-Associated Antigen N3 Minor Octasaccharide for the Development of a Photocleavable DIOS-MS Sugar Array. <i>Angewandte Chemie</i> , 2006 , 118, 2819-2823	3.6	7

(2020-2002)

94	Structure-based rationalization of aldolase-catalyzed asymmetric synthesis. <i>Canadian Journal of Chemistry</i> , 2002 , 80, 643-645	0.9	7
93	Enzymatische Regeneration von 3?-Phosphoadenosin-5?-phosphosulfat mit Aryl-Sulfotransferase zur prparativen enzymatischen Synthese von sulfatierten Kohlenhydraten. <i>Angewandte Chemie</i> , 1999 , 111, 2912-2915	3.6	7
92	Studies on Angiotensin-Converting Enzyme Inhibitors: Protease Catalyzed Resolution of Aryl 3-Mercapto-2-Methylpropionic Ester. <i>Journal of the Chinese Chemical Society</i> , 1989 , 36, 451-458	1.5	7
91	Synthesis of Oligosaccharides Using Glycosyltransferases Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1992 , 50, 441-450	0.2	7
90	Synthetic Carbohydrate Chemistry and Translational Medicine. <i>Journal of Organic Chemistry</i> , 2020 , 85, 15780-15800	4.2	7
89	Synthesis of Modular Building Blocks using Glycosyl Phosphate Donors for the Construction of Asymmetric N-Glycans. <i>Tetrahedron</i> , 2018 , 74, 6003-6011	2.4	7
88	XFEL coherent diffraction imaging for weakly scattering particles using heterodyne interference. <i>AIP Advances</i> , 2020 , 10, 055219	1.5	6
87	Suppression of Drug-Resistant Non-Small-Cell Lung Cancer with Inhibitors Targeting Minichromosomal Maintenance Protein. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 3172-3187	8.3	6
86	Biologically Relevant Glycopeptides: Synthesis and Applications 2008, 1795-1857		6
85	Synthesis and Evaluation of Transition-State Analogue Inhibitors of ⊞,3-Fucosyltransferase. <i>Angewandte Chemie</i> , 2002 , 114, 3167	3.6	6
84	Enzymatic Synthesis of Oligopeptide. Part I. Papain-Catalyzed Synthesis of Dipeptide, Tripeptide and Tetrapeptide. <i>Journal of the Chinese Chemical Society</i> , 1978 , 25, 215-218	1.5	6
83	Glycopeptide mimetics recapitulate high-mannose-type oligosaccharide binding and function. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5603-8	16.4	5
82	Iminosugar-Based Glycosyltransferase Inhibitors153-176		5
81	Crystallization and preliminary crystallographic data for class I deoxyribose-5-phosphate aldolase from Escherichia coli: an application of reverse screening. <i>Proteins: Structure, Function and Bioinformatics</i> , 1995 , 22, 67-72	4.2	5
80	Bemerkenswerte Stereoselektivitlibei der Inhibierung von EGalactosidase aus Kaffeebohnen durch einen neuen Polyhydroxypyrrolidin-Inhibitor. <i>Angewandte Chemie</i> , 1994 , 106, 1343-1345	3.6	5
79	Rekombinante ganze Zellen als Katalysatoren fildie enzymatische Synthese von Oligosacchariden und Glycopeptiden. <i>Angewandte Chemie</i> , 1994 , 106, 1346-1347	3.6	5
78	Disrupting the Conserved Salt Bridge in the Trimerization of Influenza A Nucleoprotein. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 205-215	8.3	5
77	Synthesis of Asymmetric -Glycans as Common Core Substrates for Structural Diversification through Selective Enzymatic Glycosylation. <i>ACS Chemical Biology</i> , 2020 , 15, 2382-2394	4.9	5

76	Vaccination with SARS-CoV-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models <i>Science Translational Medicine</i> , 2022 , 14, eabm0899	17.5	5
75	Glycosyltransferase Inhibitors 2005 , 609-659		4
74	Design and Synthesis of Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition. <i>Journal of the Chinese Chemical Society</i> , 1999 , 46, 271-2	8 ¹ 1 ⁵	4
73	Synthesis of Biologically Active Glycopeptides. <i>Journal of the Chinese Chemical Society</i> , 1999 , 46, 659-68	5 1.5	4
72	Synthese neuartiger 6-Amido-6-desoxy-L-galactose-Derivate als potente Sialyl-Lewisx-Mimetica. <i>Angewandte Chemie</i> , 1996 , 108, 2501-2503	3.6	4
71	Electrochemistry in Organic Synthesis.: I. Large-Scale Preparation of Cysteine From Cystine. <i>Journal of the Chinese Chemical Society</i> , 1978 , 25, 149-151	1.5	4
70	Towards new antibiotics targeting bacterial transglycosylase: Synthesis of a Lipid II analog as stable transition-state mimic inhibitor. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2018 , 28, 2708-2712	2.9	3
69	Enzymatic Synthesis of Lipid II and Analogues. <i>Angewandte Chemie</i> , 2014 , 126, 8198-8203	3.6	3
68	Toward a Carbohydrate-Based HIV-1 Vaccine. ACS Symposium Series, 2012, 187-215	0.4	3
67	Thermodynamic Models of the Multivalency Effect 2005 , 541-574		3
66	Synthetic Carbohydrate-Based Vaccines 2005 , 381-406		3
65	Toward a Carbohydrate-Based HIV-1 Vaccine. ACS Symposium Series, 2006, 161-185	0.4	3
64	Enzymatic Synthesis of Oligopeptide. Part II. Synthesis of Bis(N-Protected Amino Acid) Hydrazides by Papain. <i>Journal of the Chinese Chemical Society</i> , 1979 , 26, 11-15	1.5	3
63	Glycosite-deleted mRNA of SARS-CoV-2 spike protein as a broad-spectrum vaccine <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	3
62	New Developments in Biocatalysis. Advanced Synthesis and Catalysis, 2007, 349, 1287-1287	5.6	2
61	Chemistry, Biochemistry, and Pharmaceutical Potentials of Glycosaminoglycans and Related Saccharides 2005 , 407-439		2
60	Synthetic Multivalent Carbohydrate Ligands as Effectors or Inhibitors of Biological Processes 2005 , 575	-608	2
59	RNA-Aminoglycoside Interactions 2005 , 661-683		2

(2021-1999)

58	Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition 1999 , 38, 2300		2
57	Influenza virus neuraminidase regulates host CD8 T-cell response in mice. <i>Communications Biology</i> , 2020 , 3, 748	6.7	1
56	Trisaccharide Sulfate and Its Sulfonamide as an Effective Substrate and Inhibitor of Human Endosulfatase-1. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5282-5292	16.4	1
55	Design and synthesis of glyco-peptides as anti-cancer agents targeting thrombin-protease activated receptor-1 interaction. <i>Chemical Communications</i> , 2020 , 56, 5827-5830	5.8	1
54	The Chemistry of Sialic Acid 2005 , 55-102		1
53	Conformational Analysis of C-Glycosides and Related Compounds: Programming Conformational Profiles of C- and O-Glycosides 2005 , 305-340		1
52	Polysialic Acid Vaccines 2005 , 357-380		1
51	Sequencing of Oligosaccharides and Glycoproteins 2005 , 461-482		1
50	N-Acetylneuraminic Acid Derivatives and Mimetics as Anti-Influenza Agents 2005 , 831-861		1
49	Small Molecule Inhibitors of the Sulfotransferases 2005 , 781-801		1
49	Small Molecule Inhibitors of the Sulfotransferases 2005 , 781-801 A Preamble to Aglycone Reconstruction for Membrane-Presented Glycolipid Mimics 2005 , 761-779		1
48	A Preamble to Aglycone Reconstruction for Membrane-Presented Glycolipid Mimics 2005 , 761-779		1
48	A Preamble to Aglycone Reconstruction for Membrane-Presented Glycolipid Mimics 2005 , 761-779 Enzymatic Synthesis of Oligosaccharides 2005 , 137-167	1.5	1
48 47 46	A Preamble to Aglycone Reconstruction for Membrane-Presented Glycolipid Mimics 2005, 761-779 Enzymatic Synthesis of Oligosaccharides 2005, 137-167 Synthetic Lipid A Antagonists for Sepsis Treatment 2005, 341-355	1.5	1 1
48 47 46 45	A Preamble to Aglycone Reconstruction for Membrane-Presented Glycolipid Mimics 2005, 761-779 Enzymatic Synthesis of Oligosaccharides 2005, 137-167 Synthetic Lipid A Antagonists for Sepsis Treatment 2005, 341-355 The Resolution of RS-Mandelic Acid. <i>Journal of the Chinese Chemical Society</i> , 1979, 26, 75-78 The Resolution of Amino Acids by Enzymes Part 1: Proteolytic Enzyme Bromelain for Hydrolysis of		1 1 1
48 47 46 45 44	A Preamble to Aglycone Reconstruction for Membrane-Presented Glycolipid Mimics 2005, 761-779 Enzymatic Synthesis of Oligosaccharides 2005, 137-167 Synthetic Lipid A Antagonists for Sepsis Treatment 2005, 341-355 The Resolution of RS-Mandelic Acid. <i>Journal of the Chinese Chemical Society</i> , 1979, 26, 75-78 The Resolution of Amino Acids by Enzymes Part 1: Proteolytic Enzyme Bromelain for Hydrolysis of L-Amino Acid Methyl Esters. <i>Journal of the Chinese Chemical Society</i> , 1977, 24, 129-133 Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions.	1.5	1 1 1 1 1

40	Complex Carbohydrate Synthesis 2005 , 37-54		О
39	Chemoenzymatic Synthesis of Glycans: Overview 2015 , 293-294		O
38	Immunogenicity Evaluation of N-Glycans Recognized by HIV Broadly Neutralizing Antibodies. <i>ACS Chemical Biology</i> , 2021 , 16, 2016-2025	4.9	O
37	Combined Effect of Anti-SSEA4 and Anti-Globo H Antibodies on Breast Cancer Cells. <i>ACS Chemical Biology</i> , 2021 , 16, 1526-1537	4.9	O
36	Prologue: Biological Glycosylation (From Understanding to Problem Solving. <i>Israel Journal of Chemistry</i> , 2015 , 55, 254-255	3.4	
35	Glycopeptide Mimetics Recapitulate High-Mannose-Type Oligosaccharide Binding and Function. <i>Angewandte Chemie</i> , 2015 , 127, 5695-5700	3.6	
34	Automation in Glycan Synthesis 2014 , 1-7		
33	Recent Advances in Aldolase-Catalyzed Synthesis of Unnatural Sugars and Iminocyclitols 2010 , 405-4	19	
32	Aldolase Enzymes for Complex Synthesis203-225		
31	Synthetic Methodologies 2005 , 1-36		
30	Synthetic Methodologies 2005 , 1-36 Solution and Polymer-Supported Synthesis of Carbohydrates 2005 , 129-136		
30	Solution and Polymer-Supported Synthesis of Carbohydrates 2005 , 129-136	-280	
30	Solution and Polymer-Supported Synthesis of Carbohydrates 2005 , 129-136 Glycopeptides and Glycoproteins: Synthetic Chemistry and Biology 2005 , 169-214	-280	
30 29 28	Solution and Polymer-Supported Synthesis of Carbohydrates 2005 , 129-136 Glycopeptides and Glycoproteins: Synthetic Chemistry and Biology 2005 , 169-214 Chemical Synthesis of Asparagine-Linked Glycoprotein Oligosaccharides: Recent Examples 2005 , 253-	-280	
30 29 28	Solution and Polymer-Supported Synthesis of Carbohydrates 2005 , 129-136 Glycopeptides and Glycoproteins: Synthetic Chemistry and Biology 2005 , 169-214 Chemical Synthesis of Asparagine-Linked Glycoprotein Oligosaccharides: Recent Examples 2005 , 253- Novel Enzymatic Mechanisms in the Biosynthesis of Unusual Sugars 2005 , 713-745 Glycosylation Analysis of a Recombinant P-Selectin Antagonist by High-pH Anion-Exchange	-280	
30 29 28 27 26	Solution and Polymer-Supported Synthesis of Carbohydrates 2005, 129-136 Glycopeptides and Glycoproteins: Synthetic Chemistry and Biology 2005, 169-214 Chemical Synthesis of Asparagine-Linked Glycoprotein Oligosaccharides: Recent Examples 2005, 253- Novel Enzymatic Mechanisms in the Biosynthesis of Unusual Sugars 2005, 713-745 Glycosylation Analysis of a Recombinant P-Selectin Antagonist by High-pH Anion-Exchange Chromatography with Pulsed Electrochemical Detection (HPAEC/PED) 2005, 501-516 Carbohydrate-Based Drug Discovery in the Battle against Bacterial Infections: New Opportunities	-280	

22	Solid-Phase Oligosaccharide Synthesis 2005 , 103-127
21	Synthesis of Complex Carbohydrates: Everninomicin 2005 , 215-252
20	Chemistry and Biochemistry of Asparagine-Linked Protein Glycosylation 2005 , 281-303
19	A New Generation of Antithrombotics Based on Synthetic Oligosaccharides 2005 , 441-459
18	Preparation of Heterocyclic 2-Deoxystreptamine Aminoglycoside Analogues and Characterization of Their Interaction with RNAs by Use of Electrospray Ionization Mass Spectrometry 2005 , 483-499
17	Analytical Techniques for the Characterization and Sequencing of Glycosaminoglycans 2005 , 517-539
16	Glycoside Primers and Inhibitors of Glycosylation 2005 , 883-898
15	Modified and Modifying Sugars as a New Tool for the Development of Therapeutic Agents IThe Biochemically Engineered N-Acyl Side Chain of Sialic Acid: Biological Implications and Possible Uses in Medicine 2005 , 863-873
14	Carbohydrate-Based Treatment of Cancer Metastasis 2005 , 803-829
13	New Developments in Biocatalysis. <i>Advanced Synthesis and Catalysis</i> , 2003 , 345, 651-651 5.6
12	Strategies for Creating the Diversity of Oligosaccharides 2004 , 706-722
11	A Wide Range of Strategies Yields New Enzymatic Reactions and Processes. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 901-901
10	Enzyme Inhibitors 2005 , 356-368
9	Enantioselective Syntheses of Plate Let-Activating Factor and a Phospholipase A2 Inhibitor from Chiral Synthons Prepared Enzymatically. <i>Journal of the Chinese Chemical Society</i> , 1989 , 36, 463-468
8	Synthesis of Taiwan Cobra Venom Cardiotoxin II Synthesis of Protected Hexapeptide, Sequence 44-49 and Protected Tripeptide, Sequence 50-52. <i>Journal of the Chinese Chemical Society</i> , 1976 , 23, 155-164
7	The Mutual Resoluton of Dl-ephedrine and N-Benzyloxycarbonyl-Dl-Amino Acids. <i>Journal of the Chinese Chemical Society</i> , 1978 , 25, 209-214
6	Automated Programmable One-Pot Synthesis of Glycans 2015 , 45-52
5	Automation in Glycan Synthesis 2015 , 345-351

- 4 Chemo-Enzymatic Synthesis of Glycans: Overview **2014**, 1-3
- 3 Automated Programmable One-Pot Synthesis of Glycans **2014**, 1-7
- 2 Carbohydrates | Carbohydrate Chains: Enzymatic and Chemical Synthesis **2021**, 604-609
- Synthesis of Azido-Globo H Analogs for Immunogenicity Evaluation.. *ACS Central Science*, **2022**, 8, 77-85 16.8