Guillaume Monneret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7162758/publications.pdf

Version: 2024-02-01

180 papers 13,990 citations

51 h-index 25983 112 g-index

188 all docs

188 docs citations

188 times ranked 13465 citing authors

#	Article	IF	CITATIONS
1	HLA-DR expression on monocytes and outcome of anti-CD19 CAR T-cell therapy for large B-cell lymphoma. Blood Advances, 2023, 7, 744-755.	2.5	5
2	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8, .	5.6	35
3	Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome. Journal of Leukocyte Biology, 2022, 111, 489-496.	1.5	26
4	Bicentric evaluation of stabilizing sampling tubes for assessment of monocyte <scp>HLAâ€DR</scp> expression in clinical samples. Cytometry Part B - Clinical Cytometry, 2022, 102, 384-389.	0.7	6
5	Immune Profiling Demonstrates a Common Immune Signature of Delayed Acquired Immunodeficiency in Patients With Various Etiologies of Severe Injury*. Critical Care Medicine, 2022, 50, 565-575.	0.4	37
6	Impact of Ventilator-associated Pneumonia on Cerebrospinal Fluid Inflammation During Immunosuppression After Subarachnoid Hemorrhage: A Pilot Study. Journal of Neurosurgical Anesthesiology, 2022, 34, e57-e62.	0.6	3
7	Recombinant human interleukin-7 reverses T cell exhaustion ex vivo in critically ill COVID-19 patients. Annals of Intensive Care, 2022, 12, 21.	2.2	10
8	T cell response against SARS-CoV-2 persists after one year in patients surviving severe COVID-19. EBioMedicine, 2022, 78, 103967.	2.7	21
9	Concomitant Assessment of Monocyte HLA-DR Expression and Ex Vivo TNF-α Release as Markers of Adverse Outcome after Various Injuries—Insights from the REALISM Study. Journal of Clinical Medicine, 2022, 11, 96.	1.0	9
10	Crossâ€sectional reassessment after 4 years of clinical routine use of <scp>AQUIOS CL</scp> for absolute T cell quantitation in a university hospital. Cytometry Part B - Clinical Cytometry, 2022, , .	0.7	1
11	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	3.3	110
12	Myeloid cells in sepsisâ€acquired immunodeficiency. Annals of the New York Academy of Sciences, 2021, 1499, 3-17.	1.8	74
13	COVIDâ€19: What type of cytokine storm are we dealing with?. Journal of Medical Virology, 2021, 93, 197-198.	2.5	14
14	Sepsis and immunosenescence: closely associated in a vicious circle. Aging Clinical and Experimental Research, 2021, 33, 729-732.	1.4	13
15	Monocyte <scp>CD169</scp> expression in <scp>COVID</scp> ‶9 patients upon intensive care unit admission. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 466-471.	1.1	13
16	Longitudinal assessment of IFN-I activity and immune profile in critically ill COVID-19 patients with acute respiratory distress syndrome. Critical Care, 2021, 25, 140.	2.5	27
17	Polyclonal expansion of TCR $\hat{Vl^2}$ 21.3 ⁺ CD4 ⁺ and CD8 ⁺ T cells is a hallmark of multisystem inflammatory syndrome in children. Science Immunology, 2021, 6, .	5.6	105
18	The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respiratory Medicine, the, 2021, 9, 622-642.	5.2	371

#	Article	IF	CITATIONS
19	Immunostimulation with interferonâ€Î³ in protracted SARSâ€CoVâ€2 pneumonia. Journal of Medical Virology, 2021, 93, 5710-5711.	2.5	9
20	Autoantibodies neutralizing type I IFNs are present in $\sim\!4\%$ of uninfected individuals over 70 years old and account for $\sim\!20\%$ of COVID-19 deaths. Science Immunology, 2021, 6, .	5.6	357
21	Seroconversion in septic ICU patients presenting with COVID-19: necessary but not sufficient. Archives of Medical Research, 2021, 52, 850-857.	1.5	1
22	Herpes DNAemia and TTV Viraemia in Intensive Care Unit Critically III Patients: A Single-Centre Prospective Longitudinal Study. Frontiers in Immunology, 2021, 12, 698808.	2.2	14
23	Toward Monocyte HLA-DR Bedside Monitoring: A Proof-of-Concept Study. Shock, 2021, 55, 782-789.	1.0	7
24	Decreased Human Leukocyte Antigen DR on Circulating Monocytes Expression After Severe Pediatric Trauma: An Exploratory Report. Pediatric Critical Care Medicine, 2021, 22, e314-e323.	0.2	1
25	Monocyte Trajectories Endotypes Are Associated With Worsening in Septic Patients. Frontiers in Immunology, 2021, 12, 795052.	2.2	21
26	Comment on: CD163 as a valuable diagnostic and prognostic biomarker of sepsisâ€associated hemophagocytic lymphohistiocytosis in critically ill children. A call for HLAâ€DR in HLH. Pediatric Blood and Cancer, 2020, 67, e27979.	0.8	1
27	A new simplified and accurate sa-SOFA score. Journal of Critical Care, 2020, 57, 240-245.	1.0	7
28	Immune Profiling Panel: A Proof-of-Concept Study of a New Multiplex Molecular Tool to Assess the Immune Status of Critically Ill Patients. Journal of Infectious Diseases, 2020, 222, S84-S95.	1.9	15
29	Immune monitoring of interleukin-7 compassionate use in a critically ill COVID-19 patient. Cellular and Molecular Immunology, 2020, 17, 1001-1003.	4.8	42
30	Deciphering heterogeneity of septic shock patients using immune functional assays: a proof of concept study. Scientific Reports, 2020, 10, 16136.	1.6	11
31	Monocyte <scp>HLAâ€DR</scp> Measurement by Flow Cytometry in <scp>COVID</scp> â€19 Patients: An Interim Review. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1217-1221.	1.1	60
32	Clinical significance of a single cerebrospinal fluid immunoglobulin band: A retrospective study. Multiple Sclerosis Journal, 2020, 27, 135245852097822.	1.4	3
33	Coronavirus disease 2019 as a particular sepsis: a 2-week follow-up of standard immunological parameters in critically ill patients. Intensive Care Medicine, 2020, 46, 1764-1765.	3.9	18
34	Dynamic LTR retrotransposon transcriptome landscape in septic shock patients. Critical Care, 2020, 24, 96.	2.5	7
35	Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Critical Care, 2020, 24, 110.	2.5	72
36	Immunotherapies for COVID-19: lessons learned from sepsis. Lancet Respiratory Medicine, the, 2020, 8, 946-949.	5.2	111

#	Article	IF	CITATIONS
37	Delayed persistence of elevated monocytic MDSC associates with deleterious outcomes in septic shock: a retrospective cohort study. Critical Care, 2020, 24, 132.	2.5	21
38	Characterization of Circulating IL-10-Producing Cells in Septic Shock Patients: A Proof of Concept Study. Frontiers in Immunology, 2020, 11, 615009.	2.2	15
39	Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infectious Diseases, The, 2019, 19, e422-e436.	4.6	205
40	Regulation of soluble CD127 protein release and corresponding transcripts expression in T lymphocytes from septic shock patients. Intensive Care Medicine Experimental, 2019, 7, 3.	0.9	6
41	Mathematical modeling of septic shock: an innovative tool for assessing therapeutic hypotheses. SN Applied Sciences, $2019,1,1.$	1.5	4
42	A novel one-step extracellular staining for flow cytometry: Proof-of-concept on sepsis-related biomarkers. Journal of Immunological Methods, 2019, 470, 59-63.	0.6	16
43	TCR activation mimics CD127lowPD-1high phenotype and functional alterations of T lymphocytes from septic shock patients. Critical Care, 2019, 23, 131.	2.5	12
44	How Clinical Flow Cytometry Rebooted Sepsis Immunology. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 431-441.	1.1	33
45	Cyclosporine A prevents ischemia-reperfusion-induced lymphopenia after out-of-hospital cardiac arrest: A predefined sub-study of the CYRUS trial. Resuscitation, 2019, 138, 129-131.	1.3	8
46	Intracellular calcium signaling and phospho-antigen measurements reveal functional proximal TCR activation in lymphocytes from septic shock patients. Intensive Care Medicine Experimental, 2019, 7, 74.	0.9	2
47	Septic Shock Shapes B Cell Response toward an Exhausted-like/Immunoregulatory Profile in Patients. Journal of Immunology, 2018, 200, 2418-2425.	0.4	49
48	A standardized flow cytometry procedure for the monitoring of regulatory T cells in clinical trials. Cytometry Part B - Clinical Cytometry, 2018, 94, 777-782.	0.7	29
49	Occurrence of marked sepsis-induced immunosuppression in pediatric septic shock: a pilot study. Annals of Intensive Care, 2018, 8, 36.	2.2	30
50	Management of Sepsis-Induced Immunosuppression. Critical Care Clinics, 2018, 34, 97-106.	1.0	54
51	Decreased intra-lymphocyte cytokines measurement in septic shock patients: A proof of concept study in whole blood. Cytokine, 2018, 104, 78-84.	1.4	10
52	Ex vivo Stimulation of Lymphocytes with IL-10 Mimics Sepsis-Induced Intrinsic T-Cell Alterations. Immunological Investigations, 2018, 47, 154-168.	1.0	11
53	Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews Nephrology, 2018, 14, 121-137.	4.1	520
54	Mountain ultra-marathon finishers exhibit marked immune alterations similar to those of severe trauma patients. Intensive Care Medicine, 2018, 44, 382-383.	3.9	2

#	Article	IF	Citations
55	FP697ACTIVABILITY OF CIRCULATING TFH17 PREDICTS HUMORAL RESPONSE TO THYMUS-DEPENDENT ANTIGENS. Nephrology Dialysis Transplantation, 2018, 33, i281-i281.	0.4	0
56	Low Interleukin-7 Receptor Messenger RNA Expression Is Independently Associated With Day 28 Mortality in Septic Shock Patients*. Critical Care Medicine, 2018, 46, 1739-1746.	0.4	13
57	Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight, 2018, 3, .	2.3	265
58	IL-7 and Its Beneficial Role in Sepsis-Induced T Lymphocyte Dysfunction. Critical Reviews in Immunology, 2018, 38, 433-451.	1.0	10
59	Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations. Scientific Reports, 2018, 8, 17296.	1.6	39
60	Clinical management and viral genomic diversity analysis of a child's influenza A(H1N1)pdm09 infection in the context of a severe combined immunodeficiency. Antiviral Research, 2018, 160, 1-9.	1.9	9
61	Massive increase in monocyte HLA-DR expression can be used to discriminate between septic shock and hemophagocytic lymphohistiocytosis-induced shock. Critical Care, 2018, 22, 213.	2.5	18
62	Sepsis is associated with lack of monocyte HLA-DR expression recovery without modulating T-cell reconstitution after lung transplantation. Transplant Immunology, 2018, 51, 6-11.	0.6	7
63	Intra-cellular lactate concentration in T lymphocytes from septic shock patients — a pilot study. Intensive Care Medicine Experimental, 2018, 6, 5.	0.9	4
64	Endogenous Retroviruses Transcriptional Modulation After Severe Infection, Trauma and Burn. Frontiers in Immunology, 2018, 9, 3091.	2.2	27
65	Residual Activatability of Circulating Tfh17 Predicts Humoral Response to Thymodependent Antigens in Patients on Therapeutic Immunosuppression. Frontiers in Immunology, 2018, 9, 3178.	2.2	16
66	Source of Circulating Pentraxin 3 in Septic Shock Patients. Frontiers in Immunology, 2018, 9, 3048.	2.2	16
67	Evaluation of a novel automated volumetric flow cytometer for absolute CD4+ T lymphocyte quantitation. Cytometry Part B - Clinical Cytometry, 2017, 92, 456-464.	0.7	25
68	Novel Approach in Monocyte Intracellular TNF Measurement. Shock, 2017, 47, 318-322.	1.0	17
69	Association between mRNA expression of CD74 and IL10 and risk of ICU-acquired infections: a multicenter cohort study. Intensive Care Medicine, 2017, 43, 1013-1020.	3.9	37
70	Modulation of LILRB2 protein and mRNA expressions in septic shock patients and after ex vivo lipopolysaccharide stimulation. Human Immunology, 2017, 78, 441-450.	1.2	41
71	IL-7 Restores T Lymphocyte Immunometabolic Failure in Septic Shock Patients through mTOR Activation. Journal of Immunology, 2017, 199, 1606-1615.	0.4	45
72	The REAnimation Low Immune Status Markers (REALISM) project: a protocol for broad characterisation and follow-up of injury-induced immunosuppression in intensive care unit (ICU) critically ill patients. BMJ Open, 2017, 7, e015734.	0.8	37

#	Article	IF	Citations
73	Transcriptome modulation by hydrocortisone in severe burn shock: ancillary analysis of a prospective randomized trial. Critical Care, 2017, 21, 158.	2.5	17
74	Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 295-305.	2.2	140
75	Intracellular Flow Cytometry Improvements in Clinical Studies. Methods in Molecular Biology, 2017, 1524, 315-327.	0.4	3
76	Biological markers of injury-induced immunosuppression. Minerva Anestesiologica, 2017, 83, 302 - 314.	0.6	8
77	Assessment of sepsis-induced immunosuppression at ICU discharge and 6Âmonths after ICU discharge. Annals of Intensive Care, 2017, 7, 80.	2.2	35
78	Automated bedside flow cytometer for mHLA-DR expression measurement: a comparison study with reference protocol. Intensive Care Medicine Experimental, 2017, 5, 39.	0.9	23
79	Danger associated molecular patterns in injury: a double-edged sword?. Journal of Thoracic Disease, 2016, 8, 1060-1061.	0.6	2
80	Evaluation of mRNA Biomarkers to Identify Risk of Hospital Acquired Infections in Children Admitted to Paediatric Intensive Care Unit. PLoS ONE, 2016, 11, e0152388.	1.1	11
81	Mice Survival and Plasmatic Cytokine Secretion in a "Two Hit―Model of Sepsis Depend on Intratracheal Pseudomonas Aeruginosa Bacterial Load. PLoS ONE, 2016, 11, e0162109.	1.1	21
82	Decreased Monocyte HLA-DR Expression in Patients After Non-Shockable out-of-Hospital Cardiac Arrest. Shock, 2016, 46, 33-36.	1.0	19
83	Elevated soluble IL-7 receptor concentration in non-survivor ICU patients. Intensive Care Medicine, 2016, 42, 1639-1640.	3.9	5
84	Sepsis―nduced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. Cytometry Part B - Clinical Cytometry, 2016, 90, 376-386.	0.7	76
85	Sepsis in PD-1 light. Critical Care, 2016, 20, 186.	2.5	23
86	An optimized protocol for adenosine triphosphate quantification in T lymphocytes of lymphopenic patients. Journal of Immunological Methods, 2016, 439, 59-66.	0.6	2
87	Identification of CD177 as the most dysregulated parameter in a microarray study of purified neutrophils from septic shock patients. Immunology Letters, 2016, 178, 122-130.	1.1	59
88	Understanding why clinicians should care about danger-associated molecular patterns. Intensive Care Medicine, 2016, 42, 611-614.	3.9	6
89	HHV-6 infection after allogeneic hematopoietic stem cell transplantation: From chromosomal integration to viral co-infections and T-cell reconstitution patterns. Journal of Infection, 2016, 72, 214-222.	1.7	32
90	Effect of pneumatic tube transport on T lymphocyte subsets analysis., 2015, 88, 371-374.		4

#	Article	IF	Citations
91	Altered T Lymphocyte Proliferation upon Lipopolysaccharide Challenge Ex Vivo. PLoS ONE, 2015, 10, e0144375.	1.1	25
92	Insights and limits of translational research in critical care medicine. Annals of Intensive Care, 2015, 5, 8.	2.2	12
93	Increased Regulatory T-Cell Percentage Contributes to Poor CD4+ Lymphocytes Recovery: A 2-Year Prospective Study After Introduction of Antiretroviral Therapy. Open Forum Infectious Diseases, 2015, 2, ofv063.	0.4	11
94	Early daily mHLA-DR monitoring predicts forthcoming sepsis in severe trauma patients. Intensive Care Medicine, 2015, 41, 2229-2230.	3.9	40
95	Marked alterations of neutrophil functions during sepsis-induced immunosuppression. Journal of Leukocyte Biology, 2015, 98, 1081-1090.	1.5	158
96	A strategy to build and validate a prognostic biomarker model based on RT-qPCR gene expression and clinical covariates. BMC Bioinformatics, 2015, 16, 106.	1.2	7
97	Low-dose hydrocortisone reduces norepinephrine duration in severe burn patients: a randomized clinical trial. Critical Care, 2015, 19, 21.	2.5	36
98	STAT5 phosphorylation in T cell subsets from septic patients in response to recombinant human interleukin-7: a pilot study. Journal of Leukocyte Biology, 2015, 97, 791-796.	1.5	19
99	S100A8/A9 mRNA Induction in an Ex Vivo Model of Endotoxin Tolerance: Roles of IL-10 and IFN \hat{I}^3 . PLoS ONE, 2014, 9, e100909.	1.1	29
100	Flow cytometric evaluation of lymphocyte transformation test based on 5-ethynyl-2′deoxyuridine incorporation as a clinical alternative to tritiated thymidine uptake measurement. Journal of Immunological Methods, 2014, 415, 71-79.	0.6	29
101	Monocyte HLA-DR in sepsis: shall we stop following the flow?. Critical Care, 2014, 18, 102.	2.5	44
102	Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients. Clinical and Experimental Immunology, 2014, 176, 401-409.	1.1	27
103	Early and dynamic changes in gene expression in septic shock patients: a genome-wide approach. Intensive Care Medicine Experimental, 2014, 2, 20.	0.9	94
104	Elevated plasmatic level of soluble IL-7 receptor is associated with increased mortality in septic shock patients. Intensive Care Medicine, 2014, 40, 1089-1096.	3.9	16
105	Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infectious Diseases, 2014, 14, 166.	1.3	195
106	Comparative dose-responses of recombinant human IL-2 and IL-7 on STAT5 phosphorylation in CD4+FOXP3â^' cells versus regulatory T cells: A whole blood perspective. Cytokine, 2014, 69, 146-149.	1.4	20
107	Increased MerTK expression in circulating innate immune cells of patients with septic shock. Intensive Care Medicine, 2013, 39, 1556-1564.	3.9	28
108	Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews Immunology, 2013, 13, 862-874.	10.6	1,819

#	Article	IF	Citations
109	Immunotherapy - a potential new way forward in the treatment of sepsis. Critical Care, 2013, 17, 118.	2.5	25
110	Assessment of a novel flow cytometry technique of oneâ€step intracellular staining: Example of FOXP3 in clinical samples. Cytometry Part B - Clinical Cytometry, 2013, 84B, 187-193.	0.7	11
111	Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infectious Diseases, The, 2013, 13, 260-268.	4.6	1,138
112	Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Current Opinion in Immunology, 2013, 25, 477-483.	2.4	178
113	Interâ€laboratory assessment of flow cytometric monocyte HLAâ€DR expression in clinical samples. Cytometry Part B - Clinical Cytometry, 2013, 84B, 59-62.	0.7	78
114	CD4+CD25+CD127â^ assessment as a surrogate phenotype for FOXP3+ regulatory T cells in HIV†infected viremic and aviremic subjects. Cytometry Part B - Clinical Cytometry, 2013, 84B, 50-54.	0.7	36
115	Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock. Critical Care, 2013, 17, R287.	2.5	66
116	Decreased T-Cell Repertoire Diversity in Sepsis. Critical Care Medicine, 2013, 41, 111-119.	0.4	76
117	Immune Functional Testing in Clinics. Critical Care Medicine, 2013, 41, 367-368.	0.4	2
118	Identification of Biomarkers of Response to IFNg during Endotoxin Tolerance: Application to Septic Shock. PLoS ONE, 2013, 8, e68218.	1.1	29
119	Comment on "Translational Applications of Flow Cytometry in Clinical Practice― Journal of Immunology, 2012, 189, 1099.1-1099.	0.4	1
120	IL-7 Restores Lymphocyte Functions in Septic Patients. Journal of Immunology, 2012, 189, 5073-5081.	0.4	168
121	Persistent high level of circulating midregional-proadrenomedullin and increased risk of nosocomial infections after septic shock. Journal of Trauma, 2012, 72, 293-296.	2.3	7
122	CD4+ T-lymphocyte alterations in trauma patients. Critical Care, 2012, 16, 432.	2.5	30
123	A rapidly progressing lymphocyte exhaustion after severe sepsis. Critical Care, 2012, 16, 140.	2.5	27
124	Polyvalent immunoglobulin therapy and sepsis-induced immunosuppression. International Immunopharmacology, 2012, 12, 539.	1.7	1
125	Assessment of cellular immune parameters in paediatric toxic shock syndrome: a report of five cases. FEMS Immunology and Medical Microbiology, 2012, 66, 116-119.	2.7	6
126	Early Interleukin-6 and Slope of Monocyte Human Leukocyte Antigen-DR: A Powerful Association to Predict the Development of Sepsis after Major Trauma. PLoS ONE, 2012, 7, e33095.	1.1	107

#	Article	IF	CITATIONS
127	Clinical review: flow cytometry perspectives in the ICU - from diagnosis of infection to monitoring of injury-induced immune dysfunctions. Critical Care, 2011, 15, 231.	2.5	99
128	A dynamic view of mHLA-DR expression in management of severe septic patients. Critical Care, 2011, 15, 198.	2.5	23
129	mRNA-based approach to monitor recombinant gamma-interferon restoration of LPS-induced endotoxin tolerance. Critical Care, 2011, 15, R252.	2.5	31
130	Assessment of plasmatic immunoglobulin G, A and M levels in septic shock patients. International Immunopharmacology, 2011, 11, 2086-2090.	1.7	62
131	Flow Cytometry Developments and Perspectives in Clinical Studies: Examples in ICU Patients. Methods in Molecular Biology, 2011, 761, 261-275.	0.4	11
132	Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Critical Care, 2011, 15, R99.	2.5	263
133	ICU-acquired immunosuppression and the risk for secondary fungal infections. Medical Mycology, 2011, 49, S17-S23.	0.3	57
134	Delayed increase of S100A9 messenger RNA predicts hospital-acquired infection after septic shock*. Critical Care Medicine, 2011, 39, 2684-2690.	0.4	23
135	Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Medicine, 2010, 36, 1859-1866.	3.9	234
136	Percentage of regulatory T cells CD4+CD25+CD127â^' in HIV-infected patients is not reduced after cryopreservation. Journal of Immunological Methods, 2010, 357, 55-58.	0.6	12
137	Proatrial natriuretic peptide is a better predictor of 28-day mortality in septic shock patients than proendothelin-1. Clinical Chemistry and Laboratory Medicine, 2010, 48, 1813-1820.	1.4	10
138	EARLY ASSESSMENT OF LEUKOCYTE ALTERATIONS AT DIAGNOSIS OF SEPTIC SHOCK. Shock, 2010, 34, 358-363.	1.0	152
139	Immunology Programs Must Include Sepsis. Science, 2010, 328, 1106-1106.	6.0	1
140	Immunomodulatory cell therapy in sepsis: have we learnt lessons from the past?. Expert Review of Anti-Infective Therapy, 2010, 8, 1109-1112.	2.0	6
141	Upregulation of the pro-apoptotic genes BID and FAS in septic shock patients. Critical Care, 2010, 14, R133.	2.5	24
142	Assessment of monocytic HLA-DR expression in ICU patients: analytical issues for multicentric flow cytometry studies. Critical Care, 2010, 14, 432.	2.5	20
143	Lack of recovery in monocyte human leukocyte antigen-DR expression is independently associated with the development of sepsis after major trauma. Critical Care, 2010, 14, R208.	2.5	140
144	Additional bad news from regulatory T cells in sepsis. Critical Care, 2010, 14, 453.	2.5	4

#	Article	IF	Citations
145	PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6303-6308.	3.3	429
146	Increased circulating regulatory T cells (CD4+CD25+CD127â^') contribute to lymphocyte anergy in septic shock patients. Intensive Care Medicine, 2009, 35, 678-686.	3.9	256
147	Assessment of pro-vasopressin and pro-adrenomedullin as predictors of 28-day mortality in septic shock patients. Intensive Care Medicine, 2009, 35, 1859-1867.	3.9	621
148	Mesenchymal stem cells: another anti-inflammatory treatment for sepsis?. Nature Medicine, 2009, 15, 601-602.	15.2	8
149	Early kinetics of the transcriptional response of human leukocytes to staphylococcal superantigenic enterotoxins A and G. Microbial Pathogenesis, 2009, 47, 171-176.	1.3	9
150	Nosocomial Infection After Septic Shock Among Intensive Care Unit Patients. Infection Control and Hospital Epidemiology, 2008, 29, 1054-1065.	1.0	57
151	Decreased Expression of the Fractalkine Receptor CX3CR1 on Circulating Monocytes as New Feature of Sepsis-Induced Immunosuppression. Journal of Immunology, 2008, 180, 6421-6429.	0.4	106
152	Regulatory T cell populations in sepsis and trauma. Journal of Leukocyte Biology, 2008, 83, 523-535.	1.5	185
153	Consider delayed immunosuppression into the concept of sepsis. Critical Care Medicine, 2008, 36, 3118.	0.4	36
154	Monitoring Immune Dysfunctions in the Septic Patient: A New Skin for the Old Ceremony. Molecular Medicine, 2008, 14, 64-78.	1.9	286
155	Anergy in Septic Patients: Correlating the Increased Percentage of Circulating CD4+CD25+CD127â€Regulatory T Cells with a Decline in Lymphocyte Proliferation. FASEB Journal, 2008, 22, 848.9.	0.2	0
156	Soluble human leukocyte antigen-G5 in septic shock: Marked and persisting elevation as a predictor of survival. Critical Care Medicine, 2007, 35, 1942-1947.	0.4	30
157	Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: Correlation with severity and secondary septic shock. Critical Care Medicine, 2007, 35, 1910-1917.	0.4	157
158	Statins and sepsis: do we really need to further decrease monocyte HLA-DR expression to treat septic patients?. Lancet Infectious Diseases, The, 2007, 7, 697-699.	4.6	3
159	Systemic transcriptional analysis in survivor and non-survivor septic shock patients: A preliminary study. Immunology Letters, 2006, 106, 63-71.	1.1	86
160	Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Medicine, 2006, 32, 1175-1183.	3.9	442
161	Comparative inflammatory properties of staphylococcal superantigenic enterotoxins SEA and SEG: implications for septic shock. Journal of Leukocyte Biology, 2006, 80, 753-758.	1.5	46
162	Human CD4+CD25+ Regulatory T Lymphocytes Inhibit Lipopolysaccharide-Induced Monocyte Survival through a Fas/Fas Ligand-Dependent Mechanism. Journal of Immunology, 2006, 177, 6540-6547.	0.4	126

#	Article	IF	CITATIONS
163	The Right Circumscript Populations. Critical Care Medicine, 2005, 33, 1469.	0.4	5
164	Messenger RNA expression of major histocompatibility complex class II genes in whole blood from septic shock patients*. Critical Care Medicine, 2005, 33, 31-38.	0.4	77
165	Both percentage of $\hat{l}^3\hat{l}'T$ lymphocytes and CD3 expression are reduced during septic shock. Critical Care Medicine, 2005, 33, 2836-2840.	0.4	59
166	The Complexity of Understanding the Immunology of Sepsis. Critical Care Medicine, 2005, 33, 700-701.	0.4	20
167	Monitoring Temporary Immunodepression by Flow Cytometric Measurement of Monocytic HLA-DR Expression: A Multicenter Standardized Study. Clinical Chemistry, 2005, 51, 2341-2347.	1.5	224
168	Longitudinal study of cytokine and immune transcription factor mRNA expression in septic shock. Clinical Immunology, 2005, 114, 61-69.	1.4	87
169	The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunology Letters, 2004, 95, 193-198.	1.1	202
170	The Th2 response as monitored by CRTH2 or CCR3 expression is severely decreased during septic shock. Clinical Immunology, 2004, 113, 278-284.	1.4	22
171	Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25a^ lymphocytes. Critical Care Medicine, 2004, 32, 2329-2331.	0.4	183
172	TIME-RELATED TRANSCRIPTIONAL SIGNATURE OF SURVIVOR AND NON-SURVIVOR SEPTIC SHOCK PATIENTS. Shock, 2004, 21, 104.	1.0	1
173	Calcitonin gene related peptide and N-procalcitonin modulate CD11b upregulation in lipopolysaccharide activated monocytes and neutrophils. Intensive Care Medicine, 2003, 29, 923-928.	3.9	46
174	Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Critical Care Medicine, 2003, 31, 2068-2071.	0.4	288
175	Analytical Requirements for Measuring Monocytic Human Lymphocyte Antigen DR by Flow Cytometry: Application to the Monitoring of Patients with Septic Shock. Clinical Chemistry, 2002, 48, 1589-1592.	1.5	63
176	Analytical requirements for measuring monocytic human lymphocyte antigen DR by flow cytometry: application to the monitoring of patients with septic shock. Clinical Chemistry, 2002, 48, 1589-92.	1.5	29
177	Procalcitonin as an Acute Phase Marker. Annals of Clinical Biochemistry, 2001, 38, 483-493.	0.8	146
178	PROCALCITONIN AND CALCITONIN GENE-RELATED PEPTIDE DECREASE LPS-INDUCED TNF PRODUCTION BY HUMAN CIRCULATING BLOOD CELLS. Cytokine, 2000, 12, 762-764.	1.4	61
179	Procalcitonin as an Acute Phase Marker. , 0, .		31
180	Mortality Prediction in Sepsis With an Immune-Related Transcriptomics Signature: A Multi-Cohort Analysis. Frontiers in Medicine, 0, 9, .	1.2	7