List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7162758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews Immunology, 2013, 13, 862-874.	22.7	1,819
2	Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infectious Diseases, The, 2013, 13, 260-268.	9.1	1,138
3	Assessment of pro-vasopressin and pro-adrenomedullin as predictors of 28-day mortality in septic shock patients. Intensive Care Medicine, 2009, 35, 1859-1867.	8.2	621
4	Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews Nephrology, 2018, 14, 121-137.	9.6	520
5	Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Medicine, 2006, 32, 1175-1183.	8.2	442
6	PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6303-6308.	7.1	429
7	The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respiratory Medicine,the, 2021, 9, 622-642.	10.7	371
8	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
9	Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Critical Care Medicine, 2003, 31, 2068-2071.	0.9	288
10	Monitoring Immune Dysfunctions in the Septic Patient: A New Skin for the Old Ceremony. Molecular Medicine, 2008, 14, 64-78.	4.4	286
11	Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight, 2018, 3, .	5.0	265
12	Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Critical Care, 2011, 15, R99.	5.8	263
13	Increased circulating regulatory T cells (CD4+CD25+CD127â^') contribute to lymphocyte anergy in septic shock patients. Intensive Care Medicine, 2009, 35, 678-686.	8.2	256
14	Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Medicine, 2010, 36, 1859-1866.	8.2	234
15	Monitoring Temporary Immunodepression by Flow Cytometric Measurement of Monocytic HLA-DR Expression: A Multicenter Standardized Study. Clinical Chemistry, 2005, 51, 2341-2347.	3.2	224
16	Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infectious Diseases, The, 2019, 19, e422-e436.	9.1	205
17	The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunology Letters, 2004, 95, 193-198.	2.5	202
18	Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infectious Diseases, 2014, 14, 166.	2.9	195

#	Article	IF	CITATIONS
19	Regulatory T cell populations in sepsis and trauma. Journal of Leukocyte Biology, 2008, 83, 523-535.	3.3	185
20	Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25â^' lymphocytes. Critical Care Medicine, 2004, 32, 2329-2331.	0.9	183
21	Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Current Opinion in Immunology, 2013, 25, 477-483.	5.5	178
22	IL-7 Restores Lymphocyte Functions in Septic Patients. Journal of Immunology, 2012, 189, 5073-5081.	0.8	168
23	Marked alterations of neutrophil functions during sepsis-induced immunosuppression. Journal of Leukocyte Biology, 2015, 98, 1081-1090.	3.3	158
24	Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: Correlation with severity and secondary septic shock. Critical Care Medicine, 2007, 35, 1910-1917.	0.9	157
25	EARLY ASSESSMENT OF LEUKOCYTE ALTERATIONS AT DIAGNOSIS OF SEPTIC SHOCK. Shock, 2010, 34, 358-363.	2.1	152
26	Procalcitonin as an Acute Phase Marker. Annals of Clinical Biochemistry, 2001, 38, 483-493.	1.6	146
27	Lack of recovery in monocyte human leukocyte antigen-DR expression is independently associated with the development of sepsis after major trauma. Critical Care, 2010, 14, R208.	5.8	140
28	Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 295-305.	4.9	140
29	Human CD4+CD25+ Regulatory T Lymphocytes Inhibit Lipopolysaccharide-Induced Monocyte Survival through a Fas/Fas Ligand-Dependent Mechanism. Journal of Immunology, 2006, 177, 6540-6547.	0.8	126
30	Immunotherapies for COVID-19: lessons learned from sepsis. Lancet Respiratory Medicine,the, 2020, 8, 946-949.	10.7	111
31	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
32	Early Interleukin-6 and Slope of Monocyte Human Leukocyte Antigen-DR: A Powerful Association to Predict the Development of Sepsis after Major Trauma. PLoS ONE, 2012, 7, e33095.	2.5	107
33	Decreased Expression of the Fractalkine Receptor CX3CR1 on Circulating Monocytes as New Feature of Sepsis-Induced Immunosuppression. Journal of Immunology, 2008, 180, 6421-6429.	0.8	106
34	Polyclonal expansion of TCR Vβ 21.3 ⁺ CD4 ⁺ and CD8 ⁺ T cells is a hallmark of multisystem inflammatory syndrome in children. Science Immunology, 2021, 6, .	11.9	105
35	Clinical review: flow cytometry perspectives in the ICU - from diagnosis of infection to monitoring of injury-induced immune dysfunctions. Critical Care, 2011, 15, 231.	5.8	99
36	Early and dynamic changes in gene expression in septic shock patients: a genome-wide approach. Intensive Care Medicine Experimental, 2014, 2, 20.	1.9	94

#	Article	IF	CITATIONS
37	Longitudinal study of cytokine and immune transcription factor mRNA expression in septic shock. Clinical Immunology, 2005, 114, 61-69.	3.2	87
38	Systemic transcriptional analysis in survivor and non-survivor septic shock patients: A preliminary study. Immunology Letters, 2006, 106, 63-71.	2.5	86
39	Interâ€laboratory assessment of flow cytometric monocyte HLAâ€DR expression in clinical samples. Cytometry Part B - Clinical Cytometry, 2013, 84B, 59-62.	1.5	78
40	Messenger RNA expression of major histocompatibility complex class II genes in whole blood from septic shock patients*. Critical Care Medicine, 2005, 33, 31-38.	0.9	77
41	Decreased T-Cell Repertoire Diversity in Sepsis. Critical Care Medicine, 2013, 41, 111-119.	0.9	76
42	Sepsisâ€induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. Cytometry Part B - Clinical Cytometry, 2016, 90, 376-386.	1.5	76
43	Myeloid cells in sepsisâ€acquired immunodeficiency. Annals of the New York Academy of Sciences, 2021, 1499, 3-17.	3.8	74
44	Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Critical Care, 2020, 24, 110.	5.8	72
45	Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock. Critical Care, 2013, 17, R287.	5.8	66
46	Analytical Requirements for Measuring Monocytic Human Lymphocyte Antigen DR by Flow Cytometry: Application to the Monitoring of Patients with Septic Shock. Clinical Chemistry, 2002, 48, 1589-1592.	3.2	63
47	Assessment of plasmatic immunoglobulin C, A and M levels in septic shock patients. International Immunopharmacology, 2011, 11, 2086-2090.	3.8	62
48	PROCALCITONIN AND CALCITONIN GENE-RELATED PEPTIDE DECREASE LPS-INDUCED TNF PRODUCTION BY HUMAN CIRCULATING BLOOD CELLS. Cytokine, 2000, 12, 762-764.	3.2	61
49	Monocyte <scp>HLAâ€ÐR</scp> Measurement by Flow Cytometry in <scp>COVID</scp> â€19 Patients: An Interim Review. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1217-1221.	1.5	60
50	Both percentage of γδT lymphocytes and CD3 expression are reduced during septic shock. Critical Care Medicine, 2005, 33, 2836-2840.	0.9	59
51	Identification of CD177 as the most dysregulated parameter in a microarray study of purified neutrophils from septic shock patients. Immunology Letters, 2016, 178, 122-130.	2.5	59
52	Nosocomial Infection After Septic Shock Among Intensive Care Unit Patients. Infection Control and Hospital Epidemiology, 2008, 29, 1054-1065.	1.8	57
53	ICU-acquired immunosuppression and the risk for secondary fungal infections. Medical Mycology, 2011, 49, S17-S23.	0.7	57
54	Management of Sepsis-Induced Immunosuppression. Critical Care Clinics, 2018, 34, 97-106.	2.6	54

#	Article	IF	CITATIONS
55	Septic Shock Shapes B Cell Response toward an Exhausted-like/Immunoregulatory Profile in Patients. Journal of Immunology, 2018, 200, 2418-2425.	0.8	49
56	Calcitonin gene related peptide and N-procalcitonin modulate CD11b upregulation in lipopolysaccharide activated monocytes and neutrophils. Intensive Care Medicine, 2003, 29, 923-928.	8.2	46
57	Comparative inflammatory properties of staphylococcal superantigenic enterotoxins SEA and SEG: implications for septic shock. Journal of Leukocyte Biology, 2006, 80, 753-758.	3.3	46
58	IL-7 Restores T Lymphocyte Immunometabolic Failure in Septic Shock Patients through mTOR Activation. Journal of Immunology, 2017, 199, 1606-1615.	0.8	45
59	Monocyte HLA-DR in sepsis: shall we stop following the flow?. Critical Care, 2014, 18, 102.	5.8	44
60	Immune monitoring of interleukin-7 compassionate use in a critically ill COVID-19 patient. Cellular and Molecular Immunology, 2020, 17, 1001-1003.	10.5	42
61	Modulation of LILRB2 protein and mRNA expressions in septic shock patients and after ex vivo lipopolysaccharide stimulation. Human Immunology, 2017, 78, 441-450.	2.4	41
62	Early daily mHLA-DR monitoring predicts forthcoming sepsis in severe trauma patients. Intensive Care Medicine, 2015, 41, 2229-2230.	8.2	40
63	Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations. Scientific Reports, 2018, 8, 17296.	3.3	39
64	Association between mRNA expression of CD74 and IL10 and risk of ICU-acquired infections: a multicenter cohort study. Intensive Care Medicine, 2017, 43, 1013-1020.	8.2	37
65	The REAnimation Low Immune Status Markers (REALISM) project: a protocol for broad characterisation and follow-up of injury-induced immunosuppression in intensive care unit (ICU) critically ill patients. BMJ Open, 2017, 7, e015734.	1.9	37
66	Immune Profiling Demonstrates a Common Immune Signature of Delayed Acquired Immunodeficiency in Patients With Various Etiologies of Severe Injury*. Critical Care Medicine, 2022, 50, 565-575.	0.9	37
67	Consider delayed immunosuppression into the concept of sepsis. Critical Care Medicine, 2008, 36, 3118.	0.9	36
68	CD4+CD25+CD127â^' assessment as a surrogate phenotype for FOXP3+ regulatory T cells in HIVâ€I infected viremic and aviremic subjects. Cytometry Part B - Clinical Cytometry, 2013, 84B, 50-54.	1.5	36
69	Low-dose hydrocortisone reduces norepinephrine duration in severe burn patients: a randomized clinical trial. Critical Care, 2015, 19, 21.	5.8	36
70	Assessment of sepsis-induced immunosuppression at ICU discharge and 6Âmonths after ICU discharge. Annals of Intensive Care, 2017, 7, 80.	4.6	35
71	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8, .	11.9	35
72	How Clinical Flow Cytometry Rebooted Sepsis Immunology. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 431-441.	1.5	33

#	Article	IF	CITATIONS
73	HHV-6 infection after allogeneic hematopoietic stem cell transplantation: From chromosomal integration to viral co-infections and T-cell reconstitution patterns. Journal of Infection, 2016, 72, 214-222.	3.3	32
74	mRNA-based approach to monitor recombinant gamma-interferon restoration of LPS-induced endotoxin tolerance. Critical Care, 2011, 15, R252.	5.8	31
75	Procalcitonin as an acute phase marker. Annals of Clinical Biochemistry, 2001, 38, 483-493.	1.6	31
76	Soluble human leukocyte antigen-G5 in septic shock: Marked and persisting elevation as a predictor of survival. Critical Care Medicine, 2007, 35, 1942-1947.	0.9	30
77	CD4+ T-lymphocyte alterations in trauma patients. Critical Care, 2012, 16, 432.	5.8	30
78	Occurrence of marked sepsis-induced immunosuppression in pediatric septic shock: a pilot study. Annals of Intensive Care, 2018, 8, 36.	4.6	30
79	Identification of Biomarkers of Response to IFNg during Endotoxin Tolerance: Application to Septic Shock. PLoS ONE, 2013, 8, e68218.	2.5	29
80	S100A8/A9 mRNA Induction in an Ex Vivo Model of Endotoxin Tolerance: Roles of IL-10 and IFNγ. PLoS ONE, 2014, 9, e100909.	2.5	29
81	Flow cytometric evaluation of lymphocyte transformation test based on 5-ethynyl-2′deoxyuridine incorporation as a clinical alternative to tritiated thymidine uptake measurement. Journal of Immunological Methods, 2014, 415, 71-79.	1.4	29
82	A standardized flow cytometry procedure for the monitoring of regulatory T cells in clinical trials. Cytometry Part B - Clinical Cytometry, 2018, 94, 777-782.	1.5	29
83	Analytical requirements for measuring monocytic human lymphocyte antigen DR by flow cytometry: application to the monitoring of patients with septic shock. Clinical Chemistry, 2002, 48, 1589-92.	3.2	29
84	Increased MerTK expression in circulating innate immune cells of patients with septic shock. Intensive Care Medicine, 2013, 39, 1556-1564.	8.2	28
85	A rapidly progressing lymphocyte exhaustion after severe sepsis. Critical Care, 2012, 16, 140.	5.8	27
86	Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients. Clinical and Experimental Immunology, 2014, 176, 401-409.	2.6	27
87	Endogenous Retroviruses Transcriptional Modulation After Severe Infection, Trauma and Burn. Frontiers in Immunology, 2018, 9, 3091.	4.8	27
88	Longitudinal assessment of IFN-I activity and immune profile in critically ill COVID-19 patients with acute respiratory distress syndrome. Critical Care, 2021, 25, 140.	5.8	27
89	Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome. Journal of Leukocyte Biology, 2022, 111, 489-496.	3.3	26
90	Immunotherapy - a potential new way forward in the treatment of sepsis. Critical Care, 2013, 17, 118.	5.8	25

#	Article	IF	CITATIONS
91	Altered T Lymphocyte Proliferation upon Lipopolysaccharide Challenge Ex Vivo. PLoS ONE, 2015, 10, e0144375.	2.5	25
92	Evaluation of a novel automated volumetric flow cytometer for absolute CD4+ T lymphocyte quantitation. Cytometry Part B - Clinical Cytometry, 2017, 92, 456-464.	1.5	25
93	Upregulation of the pro-apoptotic genes BID and FAS in septic shock patients. Critical Care, 2010, 14, R133.	5.8	24
94	A dynamic view of mHLA-DR expression in management of severe septic patients. Critical Care, 2011, 15, 198.	5.8	23
95	Delayed increase of S100A9 messenger RNA predicts hospital-acquired infection after septic shock*. Critical Care Medicine, 2011, 39, 2684-2690.	0.9	23
96	Sepsis in PD-1 light. Critical Care, 2016, 20, 186.	5.8	23
97	Automated bedside flow cytometer for mHLA-DR expression measurement: a comparison study with reference protocol. Intensive Care Medicine Experimental, 2017, 5, 39.	1.9	23
98	The Th2 response as monitored by CRTH2 or CCR3 expression is severely decreased during septic shock. Clinical Immunology, 2004, 113, 278-284.	3.2	22
99	Mice Survival and Plasmatic Cytokine Secretion in a "Two Hit―Model of Sepsis Depend on Intratracheal Pseudomonas Aeruginosa Bacterial Load. PLoS ONE, 2016, 11, e0162109.	2.5	21
100	Delayed persistence of elevated monocytic MDSC associates with deleterious outcomes in septic shock: a retrospective cohort study. Critical Care, 2020, 24, 132.	5.8	21
101	Monocyte Trajectories Endotypes Are Associated With Worsening in Septic Patients. Frontiers in Immunology, 2021, 12, 795052.	4.8	21
102	T cell response against SARS-CoV-2 persists after one year in patients surviving severe COVID-19. EBioMedicine, 2022, 78, 103967.	6.1	21
103	The Complexity of Understanding the Immunology of Sepsis. Critical Care Medicine, 2005, 33, 700-701.	0.9	20
104	Assessment of monocytic HLA-DR expression in ICU patients: analytical issues for multicentric flow cytometry studies. Critical Care, 2010, 14, 432.	5.8	20
105	Comparative dose-responses of recombinant human IL-2 and IL-7 on STAT5 phosphorylation in CD4+FOXP3â^' cells versus regulatory T cells: A whole blood perspective. Cytokine, 2014, 69, 146-149.	3.2	20
106	STAT5 phosphorylation in T cell subsets from septic patients in response to recombinant human interleukin-7: a pilot study. Journal of Leukocyte Biology, 2015, 97, 791-796.	3.3	19
107	Decreased Monocyte HLA-DR Expression in Patients After Non-Shockable out-of-Hospital Cardiac Arrest. Shock, 2016, 46, 33-36.	2.1	19
108	Massive increase in monocyte HLA-DR expression can be used to discriminate between septic shock and hemophagocytic lymphohistiocytosis-induced shock. Critical Care, 2018, 22, 213.	5.8	18

#	Article	IF	CITATIONS
109	Coronavirus disease 2019 as a particular sepsis: a 2-week follow-up of standard immunological parameters in critically ill patients. Intensive Care Medicine, 2020, 46, 1764-1765.	8.2	18
110	Novel Approach in Monocyte Intracellular TNF Measurement. Shock, 2017, 47, 318-322.	2.1	17
111	Transcriptome modulation by hydrocortisone in severe burn shock: ancillary analysis of a prospective randomized trial. Critical Care, 2017, 21, 158.	5.8	17
112	Elevated plasmatic level of soluble IL-7 receptor is associated with increased mortality in septic shock patients. Intensive Care Medicine, 2014, 40, 1089-1096.	8.2	16
113	A novel one-step extracellular staining for flow cytometry: Proof-of-concept on sepsis-related biomarkers. Journal of Immunological Methods, 2019, 470, 59-63.	1.4	16
114	Residual Activatability of Circulating Tfh17 Predicts Humoral Response to Thymodependent Antigens in Patients on Therapeutic Immunosuppression. Frontiers in Immunology, 2018, 9, 3178.	4.8	16
115	Source of Circulating Pentraxin 3 in Septic Shock Patients. Frontiers in Immunology, 2018, 9, 3048.	4.8	16
116	Immune Profiling Panel: A Proof-of-Concept Study of a New Multiplex Molecular Tool to Assess the Immune Status of Critically III Patients. Journal of Infectious Diseases, 2020, 222, S84-S95.	4.0	15
117	Characterization of Circulating IL-10-Producing Cells in Septic Shock Patients: A Proof of Concept Study. Frontiers in Immunology, 2020, 11, 615009.	4.8	15
118	COVIDâ€19: What type of cytokine storm are we dealing with?. Journal of Medical Virology, 2021, 93, 197-198.	5.0	14
119	Herpes DNAemia and TTV Viraemia in Intensive Care Unit Critically III Patients: A Single-Centre Prospective Longitudinal Study. Frontiers in Immunology, 2021, 12, 698808.	4.8	14
120	Low Interleukin-7 Receptor Messenger RNA Expression Is Independently Associated With Day 28 Mortality in Septic Shock Patients*. Critical Care Medicine, 2018, 46, 1739-1746.	0.9	13
121	Sepsis and immunosenescence: closely associated in a vicious circle. Aging Clinical and Experimental Research, 2021, 33, 729-732.	2.9	13
122	Monocyte <scp>CD169</scp> expression in <scp>COVID</scp> â€19 patients upon intensive care unit admission. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 466-471.	1.5	13
123	Percentage of regulatory T cells CD4+CD25+CD127â^² in HIV-infected patients is not reduced after cryopreservation. Journal of Immunological Methods, 2010, 357, 55-58.	1.4	12
124	Insights and limits of translational research in critical care medicine. Annals of Intensive Care, 2015, 5, 8.	4.6	12
125	TCR activation mimics CD127lowPD-1high phenotype and functional alterations of T lymphocytes from septic shock patients. Critical Care, 2019, 23, 131.	5.8	12
126	Flow Cytometry Developments and Perspectives in Clinical Studies: Examples in ICU Patients. Methods in Molecular Biology, 2011, 761, 261-275.	0.9	11

#	Article	IF	CITATIONS
127	Assessment of a novel flow cytometry technique of oneâ€step intracellular staining: Example of FOXP3 in clinical samples. Cytometry Part B - Clinical Cytometry, 2013, 84B, 187-193.	1.5	11
128	Increased Regulatory T-Cell Percentage Contributes to Poor CD4+ Lymphocytes Recovery: A 2-Year Prospective Study After Introduction of Antiretroviral Therapy. Open Forum Infectious Diseases, 2015, 2, ofv063.	0.9	11
129	Evaluation of mRNA Biomarkers to Identify Risk of Hospital Acquired Infections in Children Admitted to Paediatric Intensive Care Unit. PLoS ONE, 2016, 11, e0152388.	2.5	11
130	Ex vivo Stimulation of Lymphocytes with IL-10 Mimics Sepsis-Induced Intrinsic T-Cell Alterations. Immunological Investigations, 2018, 47, 154-168.	2.0	11
131	Deciphering heterogeneity of septic shock patients using immune functional assays: a proof of concept study. Scientific Reports, 2020, 10, 16136.	3.3	11
132	Proatrial natriuretic peptide is a better predictor of 28-day mortality in septic shock patients than proendothelin-1. Clinical Chemistry and Laboratory Medicine, 2010, 48, 1813-1820.	2.3	10
133	Decreased intra-lymphocyte cytokines measurement in septic shock patients: A proof of concept study in whole blood. Cytokine, 2018, 104, 78-84.	3.2	10
134	IL-7 and Its Beneficial Role in Sepsis-Induced T Lymphocyte Dysfunction. Critical Reviews in Immunology, 2018, 38, 433-451.	0.5	10
135	Recombinant human interleukin-7 reverses T cell exhaustion ex vivo in critically ill COVID-19 patients. Annals of Intensive Care, 2022, 12, 21.	4.6	10
136	Early kinetics of the transcriptional response of human leukocytes to staphylococcal superantigenic enterotoxins A and G. Microbial Pathogenesis, 2009, 47, 171-176.	2.9	9
137	Clinical management and viral genomic diversity analysis of a child's influenza A(H1N1)pdm09 infection in the context of a severe combined immunodeficiency. Antiviral Research, 2018, 160, 1-9.	4.1	9
138	Immunostimulation with interferonâ€Î³ in protracted SARS oVâ€⊋ pneumonia. Journal of Medical Virology, 2021, 93, 5710-5711.	5.0	9
139	Concomitant Assessment of Monocyte HLA-DR Expression and Ex Vivo TNF-α Release as Markers of Adverse Outcome after Various Injuries—Insights from the REALISM Study. Journal of Clinical Medicine, 2022, 11, 96.	2.4	9
140	Mesenchymal stem cells: another anti-inflammatory treatment for sepsis?. Nature Medicine, 2009, 15, 601-602.	30.7	8
141	Biological markers of injury-induced immunosuppression. Minerva Anestesiologica, 2017, 83, 302 - 314.	1.0	8
142	Cyclosporine A prevents ischemia-reperfusion-induced lymphopenia after out-of-hospital cardiac arrest: A predefined sub-study of the CYRUS trial. Resuscitation, 2019, 138, 129-131.	3.0	8
143	Persistent high level of circulating midregional-proadrenomedullin and increased risk of nosocomial infections after septic shock. Journal of Trauma, 2012, 72, 293-296.	2.3	7
144	A strategy to build and validate a prognostic biomarker model based on RT-qPCR gene expression and clinical covariates. BMC Bioinformatics, 2015, 16, 106.	2.6	7

#	Article	IF	CITATIONS
145	Sepsis is associated with lack of monocyte HLA-DR expression recovery without modulating T-cell reconstitution after lung transplantation. Transplant Immunology, 2018, 51, 6-11.	1.2	7
146	A new simplified and accurate sa-SOFA score. Journal of Critical Care, 2020, 57, 240-245.	2.2	7
147	Dynamic LTR retrotransposon transcriptome landscape in septic shock patients. Critical Care, 2020, 24, 96.	5.8	7
148	Toward Monocyte HLA-DR Bedside Monitoring: A Proof-of-Concept Study. Shock, 2021, 55, 782-789.	2.1	7
149	Mortality Prediction in Sepsis With an Immune-Related Transcriptomics Signature: A Multi-Cohort Analysis. Frontiers in Medicine, 0, 9, .	2.6	7
150	Immunomodulatory cell therapy in sepsis: have we learnt lessons from the past?. Expert Review of Anti-Infective Therapy, 2010, 8, 1109-1112.	4.4	6
151	Assessment of cellular immune parameters in paediatric toxic shock syndrome: a report of five cases. FEMS Immunology and Medical Microbiology, 2012, 66, 116-119.	2.7	6
152	Understanding why clinicians should care about danger-associated molecular patterns. Intensive Care Medicine, 2016, 42, 611-614.	8.2	6
153	Regulation of soluble CD127 protein release and corresponding transcripts expression in T lymphocytes from septic shock patients. Intensive Care Medicine Experimental, 2019, 7, 3.	1.9	6
154	Bicentric evaluation of stabilizing sampling tubes for assessment of monocyte <scp>HLAâ€DR</scp> expression in clinical samples. Cytometry Part B - Clinical Cytometry, 2022, 102, 384-389.	1.5	6
155	The Right Circumscript Populations. Critical Care Medicine, 2005, 33, 1469.	0.9	5
156	Elevated soluble IL-7 receptor concentration in non-survivor ICU patients. Intensive Care Medicine, 2016, 42, 1639-1640.	8.2	5
157	HLA-DR expression on monocytes and outcome of anti-CD19 CAR T-cell therapy for large B-cell lymphoma. Blood Advances, 2023, 7, 744-755.	5.2	5
158	Additional bad news from regulatory T cells in sepsis. Critical Care, 2010, 14, 453.	5.8	4
159	Effect of pneumatic tube transport on T lymphocyte subsets analysis. , 2015, 88, 371-374.		4
160	Intra-cellular lactate concentration in T lymphocytes from septic shock patients — a pilot study. Intensive Care Medicine Experimental, 2018, 6, 5.	1.9	4
161	Mathematical modeling of septic shock: an innovative tool for assessing therapeutic hypotheses. SN Applied Sciences, 2019, 1, 1.	2.9	4
162	Statins and sepsis: do we really need to further decrease monocyte HLA-DR expression to treat septic patients?. Lancet Infectious Diseases, The, 2007, 7, 697-699.	9.1	3

#	Article	IF	CITATIONS
163	Intracellular Flow Cytometry Improvements in Clinical Studies. Methods in Molecular Biology, 2017, 1524, 315-327.	0.9	3
164	Clinical significance of a single cerebrospinal fluid immunoglobulin band: A retrospective study. Multiple Sclerosis Journal, 2020, 27, 135245852097822.	3.0	3
165	Impact of Ventilator-associated Pneumonia on Cerebrospinal Fluid Inflammation During Immunosuppression After Subarachnoid Hemorrhage: A Pilot Study. Journal of Neurosurgical Anesthesiology, 2022, 34, e57-e62.	1.2	3
166	Immune Functional Testing in Clinics. Critical Care Medicine, 2013, 41, 367-368.	0.9	2
167	Danger associated molecular patterns in injury: a double-edged sword?. Journal of Thoracic Disease, 2016, 8, 1060-1061.	1.4	2
168	An optimized protocol for adenosine triphosphate quantification in T lymphocytes of lymphopenic patients. Journal of Immunological Methods, 2016, 439, 59-66.	1.4	2
169	Mountain ultra-marathon finishers exhibit marked immune alterations similar to those of severe trauma patients. Intensive Care Medicine, 2018, 44, 382-383.	8.2	2
170	Intracellular calcium signaling and phospho-antigen measurements reveal functional proximal TCR activation in lymphocytes from septic shock patients. Intensive Care Medicine Experimental, 2019, 7, 74.	1.9	2
171	TIME-RELATED TRANSCRIPTIONAL SIGNATURE OF SURVIVOR AND NON-SURVIVOR SEPTIC SHOCK PATIENTS. Shock, 2004, 21, 104.	2.1	1
172	Immunology Programs Must Include Sepsis. Science, 2010, 328, 1106-1106.	12.6	1
173	Comment on "Translational Applications of Flow Cytometry in Clinical Practice― Journal of Immunology, 2012, 189, 1099.1-1099.	0.8	1
174	Polyvalent immunoglobulin therapy and sepsis-induced immunosuppression. International Immunopharmacology, 2012, 12, 539.	3.8	1
175	Comment on: CD163 as a valuable diagnostic and prognostic biomarker of sepsisâ€associated hemophagocytic lymphohistiocytosis in critically ill children. A call for HLAâ€DR in HLH. Pediatric Blood and Cancer, 2020, 67, e27979.	1.5	1
176	Seroconversion in septic ICU patients presenting with COVID-19: necessary but not sufficient. Archives of Medical Research, 2021, 52, 850-857.	3.3	1
177	Decreased Human Leukocyte Antigen DR on Circulating Monocytes Expression After Severe Pediatric Trauma: An Exploratory Report. Pediatric Critical Care Medicine, 2021, 22, e314-e323.	0.5	1
178	Crossâ€sectional reassessment after 4 years of clinical routine use of <scp>AQUIOS CL</scp> for absolute T cell quantitation in a university hospital. Cytometry Part B - Clinical Cytometry, 2022, , .	1.5	1
179	FP697ACTIVABILITY OF CIRCULATING TFH17 PREDICTS HUMORAL RESPONSE TO THYMUS-DEPENDENT ANTIGENS. Nephrology Dialysis Transplantation, 2018, 33, i281-i281.	0.7	0
180	Anergy in Septic Patients: Correlating the Increased Percentage of Circulating CD4+CD25+CD127â€Regulatory T Cells with a Decline in Lymphocyte Proliferation. FASEB Journal, 2008, 22, 848.9.	0.5	0