Aaron Weinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7162352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Roles of Antimicrobial Peptides in Innate Host Defense. Current Pharmaceutical Design, 2009, 15, 2377-2392.	0.9	498
2	Human epithelial \hat{I}^2 -defensins 2 and 3 inhibit HIV-1 replication. Aids, 2003, 17, F39-F48.	1.0	388
3	Inducible Expression of Human β-Defensin 2 by Fusobacterium nucleatum in Oral Epithelial Cells: Multiple Signaling Pathways and Role of Commensal Bacteria in Innate Immunity and the Epithelial Barrier. Infection and Immunity, 2000, 68, 2907-2915.	1.0	380
4	Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18631-18635.	3.3	321
5	Expression of the Peptide Antibiotic Human β-Defensin 1 in Cultured Gingival Epithelial Cells and Gingival Tissue. Infection and Immunity, 1998, 66, 4222-4228.	1.0	272
6	Localized antimicrobial peptide expression in human gingiva. Journal of Periodontal Research, 2001, 36, 285-294.	1.4	227
7	Role of bacteria in health and disease of periodontal tissues. Periodontology 2000, 2006, 40, 50-76.	6.3	201
8	Cutting Edge: Human β Defensin 3—A Novel Antagonist of the HIV-1 Coreceptor CXCR4. Journal of Immunology, 2006, 177, 782-786.	0.4	160
9	An Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis. PLoS ONE, 2010, 5, e10993.	1.1	125
10	Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment. Stem Cells International, 2016, 2016, 1-12.	1.2	117
11	Short-Chain Fatty Acids from Periodontal Pathogens Suppress Histone Deacetylases, EZH2, and SUV39H1 To Promote Kaposi's Sarcoma-Associated Herpesvirus Replication. Journal of Virology, 2014, 88, 4466-4479.	1.5	80
12	The Toll-like receptor 1/2 agonists Pam3CSK4 and human β-defensin-3 differentially induce interleukin-10 and nuclear factor-κB signalling patterns in human monocytes. Immunology, 2011, 134, 151-160.	2.0	72
13	Quantification of Human β-Defensin-2 and -3 in Body Fluids: Application for Studies of Innate Immunity. Clinical Chemistry, 2007, 53, 757-765.	1.5	70
14	Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontology 2000, 2010, 54, 195-206.	6.3	59
15	The Yin and Yang of Human Beta-Defensins in Health and Disease. Frontiers in Immunology, 2012, 3, 294.	2.2	59
16	Human antimicrobial peptides and cancer. Seminars in Cell and Developmental Biology, 2019, 88, 156-162.	2.3	58
17	Human Beta Defensins and Cancer: Contradictions and Common Ground. Frontiers in Oncology, 2019, 9, 341.	1.3	50
18	Determinants of Protection among HIVâ€Exposed Seronegative Persons: An Overview. Journal of Infectious Diseases, 2010, 202, S333-S338.	1.9	49

#	Article	IF	CITATIONS
19	Human beta-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology, 2016, 487, 172-187.	1.1	49
20	Overexpression of human β-defensin-3 in oral dysplasia: Potential role in macrophage trafficking. Oral Oncology, 2009, 45, 696-702.	0.8	47
21	Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications. Virology, 2015, 474, 65-81.	1.1	47
22	Mucosal Transmission of Human Immunodeficiency Virus. Current HIV Research, 2012, 10, 3-8.	0.2	46
23	Expression of the Peptide Antibiotic Human β-Defensin 1 in Cultured Gingival Epithelial Cells and Gingival Tissue. Infection and Immunity, 1998, 66, 4222-4228.	1.0	45
24	Multiplex Immunoassay of Lower Genital Tract Mucosal Fluid from Women Attending an Urban STD Clinic Shows Broadly Increased IL1ß and Lactoferrin. PLoS ONE, 2011, 6, e19560.	1.1	45
25	Immunomodulatory Peptide IDR-1018 Decreases Implant Infection and Preserves Osseointegration. Clinical Orthopaedics and Related Research, 2015, 473, 2898-2907.	0.7	43
26	TLR-2 Signaling Promotes IL-17A Production in CD4+CD25+Foxp3+ Regulatory Cells during Oropharyngeal Candidiasis. Pathogens, 2015, 4, 90-110.	1.2	41
27	Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation. Frontiers in Immunology, 2016, 7, 228.	2.2	38
28	Expression of human β-defensin-2 in intratumoral vascular endothelium and in endothelial cells induced by transforming growth factor β. Peptides, 2010, 31, 195-201.	1.2	37
29	Do <i>β</i> -Defensins and Other Antimicrobial Peptides Play a Role in Neuroimmune Function and Neurodegeneration?. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	37
30	Nutlin-3 induces apoptosis, disrupts viral latency and inhibits expression of angiopoietin-2 in Kaposi sarcoma tumor cells. Cell Cycle, 2012, 11, 1393-1399.	1.3	34
31	Occurrence of Spontaneous Periodontal Disease in the SAMP1/YitFc Murine Model of Crohn Disease. Journal of Periodontology, 2014, 85, 1799-1805.	1.7	33
32	Characterizing traditionally defined periodontal disease in HIV+ adults. Community Dentistry and Oral Epidemiology, 2009, 37, 427-437.	0.9	31
33	Human β-Defensin 3 Peptide Is Increased and Redistributed in Crohn's Ileitis. Inflammatory Bowel Diseases, 2013, 19, 942-953.	0.9	31
34	Fusobacterium nucleatum-associated Î ² -Defensin Inducer (FAD-I). Journal of Biological Chemistry, 2010, 285, 36523-36531.	1.6	30
35	Human β defensinâ€3 induces chemokines from monocytes and macrophages: diminished activity in cells from <scp>HIV</scp> â€infected persons. Immunology, 2013, 140, 413-420.	2.0	30
36	FAD-I, a Fusobacterium nucleatum Cell Wall-Associated Diacylated Lipoprotein That Mediates Human Beta Defensin 2 Induction through Toll-Like Receptor-1/2 (TLR-1/2) and TLR-2/6. Infection and Immunity, 2016, 84, 1446-1456.	1.0	30

#	Article	IF	CITATIONS
37	Ramping Up Antimicrobial Peptides Against Severe Acute Respiratory Syndrome Coronavirus-2. Frontiers in Molecular Biosciences, 2021, 8, 620806.	1.6	28
38	Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. Stem Cell Discovery, 2013, 03, 139-153.	0.5	28
39	Identification of innate immune antiretroviral factors during inÂvivo and inÂvitro exposure to HIV-1. Microbes and Infection, 2016, 18, 211-219.	1.0	25
40	Fusobacterium nucleatum and Human Beta-Defensins Modulate the Release of Antimicrobial Chemokine CCL20/Macrophage Inflammatory Protein 3α. Infection and Immunity, 2011, 79, 4578-4587.	1.0	24
41	Conceptual Perspectives: Bacterial Antimicrobial Peptide Induction as a Novel Strategy for Symbiosis with the Human Host. Frontiers in Microbiology, 2018, 9, 302.	1.5	24
42	Detection of HBD1 peptide in peripheral blood mononuclear cell subpopulations by intracellular flow cytometry. Peptides, 2003, 24, 1785-1794.	1.2	23
43	Epithelial Innate Immune Response to Acinetobacter baumannii Challenge. Infection and Immunity, 2014, 82, 4458-4465.	1.0	23
44	Proteomic Signatures of Human Oral Epithelial Cells in HIV-Infected Subjects. PLoS ONE, 2011, 6, e27816.	1.1	23
45	HBD-2 binds SARS-CoV-2 RBD and blocks viral entry: Strategy to combat COVID-19. IScience, 2022, 25, 103856.	1.9	23
46	Human papillomavirus oncogenic E6 protein regulates human β-defensin 3 (hBD3) expression via the tumor suppressor protein p53. Oncotarget, 2016, 7, 27430-27444.	0.8	22
47	Membrane damage and repair in primary monocytes exposed to human β-defensin-3. Journal of Leukocyte Biology, 2012, 92, 1083-1091.	1.5	20
48	Isolation of T cells from mouse oral tissues. Biological Procedures Online, 2014, 16, 4.	1.4	20
49	Human β Defensin-3 Increases CD86 Expression on Monocytes by Activating the ATP-Gated Channel P2X7. Journal of Immunology, 2015, 195, 4438-4445.	0.4	20
50	Identification of Casz1 as a Regulatory Protein Controlling T Helper Cell Differentiation, Inflammation, and Immunity. Frontiers in Immunology, 2018, 9, 184.	2.2	20
51	Mobile rRNA methylase genes in Campylobacter (Wotinella) rectus. Journal of Antimicrobial Chemotherapy, 1995, 36, 738-740.	1.3	19
52	Human βâ€defensinâ€3 structure motifs that are important in <scp>CXCR</scp> 4 antagonism. FEBS Journal, 2013, 280, 3365-3375.	2.2	19
53	Kaposi's Sarcoma-Associated Herpesvirus Induces Rapid Release of Angiopoietin-2 from Endothelial Cells. Journal of Virology, 2013, 87, 6326-6335.	1.5	19
54	IL-1β-MyD88-mTOR Axis Promotes Immune-Protective IL-17A+Foxp3+ Cells During Mucosal Infection and Is Dysregulated With Aging. Frontiers in Immunology, 2020, 11, 595936.	2.2	18

#	Article	IF	CITATIONS
55	A Prospective Cohort Study of Periodontal Disease Measures and Cardiovascular Disease Markers in HIV-Infected Adults. AIDS Research and Human Retroviruses, 2011, 27, 1157-1166.	0.5	16
56	Comparison of epigenetic profiles of human oral epithelial cells from HIV-positive (on HAART) and HIV-negative subjects. Epigenetics, 2013, 8, 703-709.	1.3	16
57	HBD-3 induces NK cell activation, IFN-γ secretion and mDC dependent cytolytic function. Cellular Immunology, 2015, 297, 61-68.	1.4	16
58	Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth. Cell Cycle, 2016, 15, 2053-2065.	1.3	16
59	Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle, 2017, 16, 1611-1621.	1.3	16
60	Direct Detection of <i>Porphyromonas gingivalis</i> in <i>Macaca fascicularis</i> Dental Plaque Samples Using an Oligonucleotide Probe. Journal of Periodontology, 1994, 65, 398-403.	1.7	15
61	Bacterial Colonization and Beta Defensins in the Female Genital Tract in HIV Infection. Current HIV Research, 2012, 10, 504-512.	0.2	15
62	Innate immune mechanisms to oral pathogens in oral mucosa of HIVâ€infected individuals. Oral Diseases, 2020, 26, 69-79.	1.5	13
63	Effect of Nadir CD4+ T Cell Count on Clinical Measures of Periodontal Disease in HIV+ Adults before and during Immune Reconstitution on HAART. PLoS ONE, 2013, 8, e76986.	1.1	13
64	Copy Number Variation within Human β-Defensin Gene Cluster Influences Progression to AIDS in the Multicenter AIDS Cohort Study. Journal of AIDS & Clinical Research, 2012, 03, .	0.5	13
65	Assessment of the incidence of squamous cell papilloma of the esophagus and the presence of high-risk human papilloma virus. Ecological Management and Restoration, 2016, 30, n/a-n/a.	0.2	12
66	Defensin gene variation and HIV/AIDS: a comprehensive perspective needed. Journal of Leukocyte Biology, 2016, 99, 687-692.	1.5	12
67	The Role of Dectin-1 Signaling in Altering Tumor Immune Microenvironment in the Context of Aging. Frontiers in Oncology, 2021, 11, 669066.	1.3	12
68	Proteomic and Bioinformatic Profile of Primary Human Oral Epithelial Cells. Journal of Proteome Research, 2012, 11, 5492-5502.	1.8	11
69	Translocation of Human β Defensin Type 3 through a Neutrally Charged Lipid Membrane: A Free Energy Study. Journal of Physical Chemistry B, 2018, 122, 11883-11894.	1.2	11
70	Characterization of Erythromycin Resistance in Campylobacter (Wolinella) rectus. Clinical Infectious Diseases, 1995, 20, S370-S371.	2.9	10
71	Th17 Inflammation Model of Oropharyngeal Candidiasis in Immunodeficient Mice. Journal of Visualized Experiments, 2015, , .	0.2	10
72	Associations of Toll-Like Receptor and Î2-Defensin Polymorphisms with Measures of Periodontal Disease	1.1	7

#	Article	IF	CITATIONS
73	Role of FAD-I in Fusobacterial Interspecies Interaction and Biofilm Formation. Microorganisms, 2020, 8, 70.	1.6	7
74	Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting. Statistical Applications in Genetics and Molecular Biology, 2018, 17, .	0.2	2
75	When Mr. Fap Meets the Gals. Cell Host and Microbe, 2016, 20, 125-126.	5.1	1
76	hBD-2 Binds SARS-CoV-2 RBD and Blocks Viral Entry: Strategy to Combat COVID-19. SSRN Electronic Journal, 0, , .	0.4	1
77	Human β-Defensin-3 is Associated With Platelet-Derived Extracellular Vesicles and is a Potential Contributor to Endothelial Dysfunction. Frontiers in Molecular Biosciences, 2022, 9, 824954.	1.6	1
78	Human Beta Defensins and RNases: Antiviral Effect during Sexual Exposure to HIV-1. AIDS Research and Human Retroviruses, 2014, 30, A129-A129.	0.5	0