Ve Golimbet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7162347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.	27.8	6,934
2	LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 2015, 47, 291-295.	21.4	3,905
3	Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 2011, 43, 969-976.	21.4	1,758
4	Common variants conferring risk of schizophrenia. Nature, 2009, 460, 744-747.	27.8	1,572
5	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	21.4	1,395
6	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	21.4	1,332
7	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	6.2	1,098
8	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
9	Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases. American Journal of Human Genetics, 2014, 95, 535-552.	6.2	569
10	Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Human Molecular Genetics, 2011, 20, 4076-4081.	2.9	193
11	Expanding the range of ZNF804A variants conferring risk of psychosis. Molecular Psychiatry, 2011, 16, 59-66.	7.9	140
12	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. American Journal of Human Genetics, 2018, 102, 1185-1194.	6.2	119
13	A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts. Biological Psychiatry, 2021, 90, 611-620.	1.3	103
14	De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nature Neuroscience, 2020, 23, 179-184.	14.8	100
15	Association Between Angiotensin-Converting Enzyme and Alzheimer Disease. Archives of Neurology, 2000, 57, 210.	4.5	96
16	Relationship between dopamine system genes and extraversion and novelty seeking. Neuroscience and Behavioral Physiology, 2007, 37, 601-606.	0.4	93
17	Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry, 2014, 19, 108-114.	7.9	85
18	Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. Schizophrenia Research, 2008, 100, 302-307.	2.0	65

#	Article	IF	CITATIONS
19	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	1.3	61
20	Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Molecular Psychiatry, 2014, 19, 774-783.	7.9	56
21	Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophrenia Research, 2018, 197, 305-314.	2.0	48
22	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	11.0	44
23	Schizophrenia genetic variants are not associated with intelligence. Psychological Medicine, 2013, 43, 2563-2570.	4.5	40
24	Association study of COMT gene Val158Met polymorphism with auditory P300 and performance on neurocognitive tests in patients with schizophrenia and their relatives. World Journal of Biological Psychiatry, 2006, 7, 238-245.	2.6	34
25	Analysis of the linkage of the Taq1A and Taq1B loci of the dopamine D2 receptor gene with schizophrenia in patients and their siblings. Neuroscience and Behavioral Physiology, 2003, 33, 223-225.	0.4	27
26	Evaluation of the dementia carers situation in Russia. International Journal of Geriatric Psychiatry, 2001, 16, 94-99.	2.7	24
27	Polymorphism of the Serotonin 2A Receptor Gene (5HTR2A) and Personality Traits. Molecular Biology, 2004, 38, 337-344.	1.3	24
28	Polymorphism of Serotonin Receptor Genes (5-HTR2A) and Dysbindin (DTNBP1) and Individual Components of Short-Term Verbal Memory Processes in Schizophrenia. Neuroscience and Behavioral Physiology, 2010, 40, 934-940.	0.4	22
29	5HTR2A gene polymorphism and personality traits in patients with major psychoses. European Psychiatry, 2002, 17, 24-28.	0.2	21
30	Serotonin Transporter Gene Polymorphism and Schizoid Personality Traits in Patients with Psychosis and Psychiatrically Well Subjects. World Journal of Biological Psychiatry, 2003, 4, 25-29.	2.6	20
31	Supportive evidence for the association between the T102C 5-HTR2A gene polymorphism and schizophrenia: A large-scale case–control and family-based study. European Psychiatry, 2007, 22, 167-170.	0.2	20
32	Serotonin transporter polymorphism and depressiveâ€related symptoms in schizophrenia. American Journal of Medical Genetics Part A, 2004, 126B, 1-7.	2.4	19
33	Viability and genetic stability of the bacterium Escherichia coli HB101 with the recombinant plasmid during preservation by various methods. Cryobiology, 1991, 28, 251-254.	0.7	18
34	Effect of BDNF Val66Met Polymorphism on Normal Variability of Executive Functions. Bulletin of Experimental Biology and Medicine, 2012, 152, 606-609.	0.8	17
35	Arginine vasopressin 1a receptor RS3 promoter microsatellites in schizophrenia: A study of the effect of the "risk―allele on clinical symptoms and facial affect recognition. Psychiatry Research, 2015, 225, 739-740.	3.3	17
36	The 844ins68 polymorphism of the cystathionine beta-synthase gene is associated with schizophrenia. Psychiatry Research, 2009, 170, 168-171.	3.3	16

#	Article	IF	CITATIONS
37	Association between a Synaptosomal Protein (SNAP-25) Gene Polymorphism and Verbal Memory and Attention in Patients with Endogenous Psychoses and Mentally Healthy Subjects. Neuroscience and Behavioral Physiology, 2010, 40, 461-465.	0.4	15
38	Replication Study and Meta-Analysis in European Samples Supports Association of the 3p21.1 Locus with Bipolar Disorder. Biological Psychiatry, 2012, 72, 645-650.	1.3	15
39	The serotonin transporter gene 5-HTTLPR polymorphism is associated with affective psychoses but not with schizophrenia: A large-scale study in the Russian population. Journal of Affective Disorders, 2017, 208, 604-609.	4.1	14
40	Copy number variations of satellite III (1q12) and ribosomal repeats in health and schizophrenia. Schizophrenia Research, 2020, 223, 199-212.	2.0	13
41	Association of the Val66Met polymorphism of the brain-derived neurotrophic factor gene with schizophrenia in Russians. Molecular Biology, 2008, 42, 531-535.	1.3	11
42	Prediction of smoking by multiplex bisulfite PCR with long amplicons considering allele-specific effects on DNA methylation. Clinical Epigenetics, 2018, 10, 130.	4.1	11
43	Interaction of dopamine system genes and cognitive functions in patients with schizophrenia and their relatives and in healthy subjects from the general population. Neuroscience and Behavioral Physiology, 2007, 37, 643-650.	0.4	10
44	Title is missing!. Russian Journal of Genetics, 2001, 37, 422-427.	0.6	9
45	The functional state of the serotonergic system and the 5-HTTLPR polymorphism of the serotonin transporter gene in patients with schizophrenia. Molecular Biology, 2010, 44, 223-227.	1.3	9
46	Title is missing!. Molecular Biology, 2003, 37, 62-66.	1.3	8
47	Analysis of Associations between 5-HTT, 5-HTR2A, and GABRA6 Gene Polymorphisms and Health-Associated Personality Traits. Bulletin of Experimental Biology and Medicine, 2010, 149, 434-436.	0.8	8
48	Polymorphic Markers of the Dopamine D4 Receptor Gene Promoter Region and Personality Traits in Mentally Healthy Individuals from the Russian Population. Russian Journal of Genetics, 2005, 41, 789-793.	0.6	7
49	Association of 5-HTR2A and 5-HTR2C Serotonin Receptor Gene Polymorphisms with Depression Risk in Patients with Coronary Heart Disease. Bulletin of Experimental Biology and Medicine, 2014, 156, 680-683.	0.8	7
50	Emotional Distress in Parents of Psychotic Patients is Modified by Serotonin Transporter Gene (5-HTTLPR) - Brain-Derived Neurotrophic Factor Gene Interactions. Spanish Journal of Psychology, 2009, 12, 696-706.	2.1	6
51	Allele Polymorphism of the Serotonin Transporter Gene and Clinical Heterogeneity of Depressions. Russian Journal of Genetics, 2002, 38, 554-559.	0.6	5
52	The modulatory influence of polymorphism of the serotonin transporter gene on characteristics of mental maladaptation in relatives of patients with endogenous psychoses. Neuroscience and Behavioral Physiology, 2008, 38, 253-258.	0.4	5
53	Association of 5-HTTLPR Serotonin Transporter Gene Polymorphism and Val66Met Brain-Derived Neurotrophic Factor Gene Polymorphism with Auditory N100 Evoked Potential Amplitude in Patients with Endogenous Psychoses. Bulletin of Experimental Biology and Medicine, 2008, 146, 605-608.	0.8	5
54	Interaction Effects of the COMT and DRD4 Genes with Anxiety-Related Traits on Selective Attention. Spanish Journal of Psychology, 2014, 17, E44.	2.1	5

#	Article	IF	CITATIONS
55	Modulating effect of Val66Met polymorphism of brain-derived neurotrophic factor gene on clinical and psychological characteristics of patients with schizophrenia. Molecular Biology, 2014, 48, 69-74.	1.3	5
56	Relationship between Alzheimer's disease-associated SNPs within the CLU gene, local DNA methylation and episodic verbal memory in healthy and schizophrenia subjects. Psychiatry Research, 2019, 272, 380-386.	3.3	5
57	Association of dopamine receptor D5 gene polymorphism with peculiarities of voluntary attention in schizophrenic patients and their relatives. Bulletin of Experimental Biology and Medicine, 2008, 145, 65-67.	0.8	4
58	Association of kynurenine-3-monooxygenase gene with schizophrenia. Russian Journal of Genetics, 2014, 50, 634-637.	0.6	4
59	Data on association of the variation (rs1344706) in the ZNF804A gene with schizophrenia and its symptoms in the Russian population. Data in Brief, 2019, 24, 103985.	1.0	4
60	Association of the insulin-like growth factor II (IGF2) gene with human cognitive functions. Russian Journal of Genetics, 2012, 48, 846-850.	0.6	3
61	Association between serotonin receptor 2C gene Cys23Ser polymorphism and social behavior in schizophrenia patients and healthy individuals. Russian Journal of Genetics, 2015, 51, 198-203.	0.6	3
62	Profiling haplotype specific CpG and CpH methylation within a schizophrenia GWAS locus on chromosome 14 in schizophrenia and healthy subjects. Scientific Reports, 2020, 10, 4704.	3.3	3
63	Populationâ€based identityâ€byâ€descent mapping combined with exome sequencing to detect rare risk variants for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 223-231.	1.7	2
64	Relationships between schizotypal features, trait anticipatory and consummatory pleasure, and naturalistic hedonic States. Motivation and Emotion, 2021, 45, 649-660.	1.3	2
65	Title is missing!. Russian Journal of Genetics, 2001, 37, 436-439.	0.6	1
66	The angiotensin-converting enzyme gene as a possible risk or protective factor in Alzheimer's disease. Neuroscience and Behavioral Physiology, 2001, 31, 179-181.	0.4	1
67	Serotonin Transporter Gene Polymorphism and Personality Traits Measured by MMPI. Russian Journal of Genetics, 2003, 39, 435-439.	0.6	1
68	Genomics in Psychology and Psychiatry. Molecular Biology, 2004, 38, 140-144.	1.3	1
69	Association between the tryptophan hydroxylase (TpH) gene polymorphic markers and endogenous psychoses. Russian Journal of Genetics, 2009, 45, 1475-1479.	0.6	1
70	A Potential Role of the 5-HTTLPR Polymorphism in Self-Reported Executive Functioning. Spanish Journal of Psychology, 2017, 20, E13.	2.1	1
71	Dataset on negative symptoms factors in patients with schizophrenia. Data in Brief, 2022, 40, 107790.	1.0	1
72	The Creation of Clinical and Biological Concept of Schizophrenia: Participation of Chronic Inflammation and Genetic Predisposition in the Formation of Psychopathological Disorders. Psychiatry, 2022, 20, 6-13.	0.7	1

#	Article	IF	CITATIONS
73	P01.116 Serotonin transporter and serotonin receptor genes polymorphisms in the Russian patients with schizophrenia and affective disorders. European Psychiatry, 2000, 15, 351s-351s.	0.2	0
74	P01.142 EEG of relatives of schizophrenics: Peculiarities and associations with cognitive and CT parameters. European Psychiatry, 2000, 15, 358s-358s.	0.2	0
75	Title is missing!. Molecular Biology, 2001, 35, 336-338.	1.3	0
76	P.4.024 Serotonin transporter gene polymorphism as a possible modifying factor of individual response to stress. European Neuropsychopharmacology, 2005, 15, S185-S186.	0.7	0
77	Anomalies of information processing in schizophrenia in convergence with clinical, molecular–genetic and immunological data. International Journal of Psychophysiology, 2008, 69, 204.	1.0	0
78	Polimorfismo del gen del receptor de tipo 2A para la serotonina (5HTR2A) y rasgos de la personalidad en pacientes con psicosis mayores. European Psychiatry (Ed Española), 2002, 9, 256-261.	0.0	0
79	Family history of mood disorders may weaken the link between adverse childhood experience and suicidality in patients with depression. Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova, 2022, 122,	0.7	0