Ivan V Smirnov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7161619/publications.pdf

Version: 2024-02-01

1307366 1372474 33 112 7 10 citations g-index h-index papers 33 33 33 21 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure and mechanical properties of V–Cr–Zr alloy with carbide and oxide strengthening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 843, 143159.	2.6	2
2	Structural relaxation features of spark plasma sintered Ni3Al samples. AIP Conference Proceedings, 2022, , .	0.3	O
3	Thermomechanical treatment influence on microstructure and mechanical properties of V-W-Cr alloy. AIP Conference Proceedings, 2022, , .	0.3	О
4	Influence of ball milling duration on the morphology, features of the structural-phase state and microhardness of 3Ni-Al powder mixture. Advanced Powder Technology, 2021, 32, 3447-3455.	2.0	10
5	Influence of oxygen concentration on the formation features and thermal stability of the V–Cr–W–Zr alloy microstructure under combined treatment conditions. Materials Characterization, 2020, 168, 110517.	1.9	7
6	Morphology, structural-phase state and microhardness of a multicomponent non-equiatomic W-Ta-Mo-Nb-Zr-Cr-Ti powders mixture depending on the duration of ball milling. Advanced Powder Technology, 2020, 31, 4401-4410.	2.0	6
7	Two-level Nanostructural States in Metallic BCC-Materials after High-pressure Torsion in the Bridgman Anvils. Russian Physics Journal, 2020, 62, 1854-1864.	0.2	O
8	Structure and Phase Composition of a W-Ta-Mo-Nb-V-Cr-Zr-Ti Alloy Obtained by Ball Milling and Spark Plasma Sintering. Entropy, 2020, 22, 143.	1.1	11
9	Microstructure and Microhardness of a Multicomponent System After Mechanical Activation and Spark Plasma Sintering. Russian Physics Journal, 2020, 62, 1746-1748.	0.2	1
10	Microstructure and microhardness of Ni3Al after spark plasma sintering and subsequent heat treatments. AIP Conference Proceedings, 2020, , .	0.3	0
11	The Influence of Duration of Preliminary Mechanical Activation on Microhardness of Specimens of Ni3Al Intermetallide Synthesized Under Conditions of Spark Plasma Sintering. Russian Physics Journal, 2019, 61, 1947-1949.	0.2	3
12	The Influence of Thermomechanical Treatment Conditions on Characteristics of Structural-Phase Transformations and Level of Mechanical Properties of Vanadium Alloys of Different Systems. Russian Physics Journal, 2019, 62, 1478-1485.	0.2	1
13	Influence of deformation degree on defect structure of disperse strengthened V–Cr–W–ZrO2 alloy. AIP Conference Proceedings, 2019, , .	0.3	О
14	Thermal stability of microstructure and microhardness of Ni3Al samples with different duration of preliminary mechanical activation. AlP Conference Proceedings, $2019, \ldots$	0.3	1
15	A Multi-Layer Composite Based on the 3Ni–Al System Produced by a Combined Deformation Treatment. Russian Physics Journal, 2019, 61, 1674-1680.	0.2	4
16	Thermal Stability of Nanostructured Internally Oxidized Vanadium Alloy with Combined Dispersion and Substructural Hardening. Physical Mesomechanics, 2019, 22, 496-503.	1.0	10
17	The Influence of Microstructure on Oxidation Rate Of V–Cr–Ta–Zr Alloy During Its Chemical-Heat Treatment. Russian Physics Journal, 2018, 61, 1506-1512.	0.2	5
18	The Influence of the Regimes of Thermomechanical Treatments on the Features of Heterophase and Grain Structure of A V–Cr–Zr–Ta Alloy. Russian Physics Journal, 2018, 61, 936-941.	0.2	8

#	Article	IF	CITATIONS
19	Formation of Nanostructured State in an Internally Oxidized Vanadium Alloy Under Severe Plastic Deformation. Russian Physics Journal, 2017, 59, 2094-2100.	0.2	2
20	The Influence of Duration of Mechanical Activation of Titanium Powder on its Morphology, Microstructure, and Microhardness. Russian Physics Journal, 2017, 60, 1033-1039.	0.2	0
21	Effect of thermomechanical treatment modes on the features of heterophase and grain structure, and mechanical properties of V–Cr–Zr–Ta alloy. AIP Conference Proceedings, 2017, , .	0.3	O
22	Application of Electric-Arc Pulsed Mode for Obtaining Surfacings of Fe–Mo–Cr–Ti–Ni–Cu–Al-System. IOP Conference Series: Materials Science and Engineering, 2017, 253, 012031.	0.3	1
23	A study of the morphology, microstructure, and microhardness of titanium powder depending on the mechanical activation time. AIP Conference Proceedings, 2017, , .	0.3	O
24	Features of formation of nanocrystalline state in internal- oxidized V-Cr-Zr-W and V-Mo-Zr system alloys during deformation by torsion under pressure. IOP Conference Series: Materials Science and Engineering, 2016, 116, 012037.	0.3	1
25	Influence of temperature on microstructure parameters and microhardness of dispersion-hardened V–Cr–Zr–W alloy after deformation by torsion under pressure. AIP Conference Proceedings, 2016, , .	0.3	O
26	Evolution of microstructure and microhardness of dispersion-hardened V–Cr–Zr–W alloy during deformation by torsion under pressure. AIP Conference Proceedings, 2016, , .	0.3	1
27	Microstructure and mechanical properties of vanadium alloys after thermomechanical treatments. AIP Conference Proceedings, 2015, , .	0.3	O
28	Features of plastic deformation and fracture of dispersion-strengthened V–Cr–Zr–W alloy depending on temperature of tension. AIP Conference Proceedings, 2015, , .	0.3	0
29	The effect of thermomechanical treatment regimes on microstructure and mechanical properties of V–Me(Cr, W)–Zr–C alloys. Physics of Atomic Nuclei, 2015, 78, 1092-1099.	0.1	12
30	Features of Plastic Deformation and Fracture of a Dispersion-Strengthened V–4Ti–4Cr–(C, N, O) Alloy at Different Temperatures. Russian Physics Journal, 2015, 58, 205-211.	0.2	2
31	Microstructure and mechanical properties of V–Me(Cr,W)–Zr alloys as a function of their chemical–thermal treatment modes. Nuclear Materials and Energy, 2015, 3-4, 17-21.	0.6	23
32	Investigation of features of plastic deformation and fracture of fine-crystalline V-4Ti-4Cr alloy. , 2014, , .		0
33	Effect of modes of thermomechanical treatments on structural-phase states and mechanical properties of V–Cr–Zr–W-system alloys. , 2014, , .		1