Joel David Hamkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7161541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infinite time Turing machines. Journal of Symbolic Logic, 2000, 65, 567-604.	0.4	197
2	THE SET-THEORETIC MULTIVERSE. Review of Symbolic Logic, 2012, 5, 416-449.	0.7	123
3	The lottery preparation. Annals of Pure and Applied Logic, 2000, 101, 103-146.	0.3	78
4	A simple maximality principle. Journal of Symbolic Logic, 2003, 68, 527-550.	0.4	75
5	Gap forcing. Israel Journal of Mathematics, 2001, 125, 237-252.	0.4	72
6	Extensions with the approximation and cover properties have no new large cardinals. Fundamenta Mathematicae, 2003, 180, 257-277.	0.2	69
7	Gap Forcing: Generalizing the Lévy-Solovay Theorem. Bulletin of Symbolic Logic, 1999, 5, 264-272.	0.2	65
8	The modal logic of forcing. Transactions of the American Mathematical Society, 2008, 360, 1793-1817.	0.5	44
9	Small forcing creates neither strong nor Woodin cardinals. Proceedings of the American Mathematical Society, 2000, 128, 3025-3030.	0.4	43
10	Infinite Time Turing Machines. Minds and Machines, 2002, 12, 521-539.	2.7	39
11	Set-theoretic geology. Annals of Pure and Applied Logic, 2015, 166, 464-501.	0.3	36
12	The Halting Problem Is Decidable on a Set of Asymptotic Probability One. Notre Dame Journal of Formal Logic, 2006, 47, 515.	0.2	28
13	What is the theory without power set?. Mathematical Logic Quarterly, 2016, 62, 391-406.	0.2	28
14	Indestructibility and the level-by-level agreement between strong compactness and supercompactness. Journal of Symbolic Logic, 2002, 67, 820-840.	0.4	26
15	Infinite Time Turing Machines With Only One Tape. Mathematical Logic Quarterly, 2001, 47, 271-287.	0.2	24
16	P ≠NP â^© co-NP for Infinite Time Turing Machines. Journal of Logic and Computation, 2005, 15, 577-592.	0.5	24
17	The Hierarchy of Equivalence Relations on the Natural Numbers Under Computable Reducibility. Computability, 2012, 1, 15-38.	0.3	24
18	Destruction or preservation as you like it. Annals of Pure and Applied Logic, 1998, 91, 191-229.	0.3	22

JOEL DAVID HAMKINS

#	Article	IF	CITATIONS
19	Post's problem for supertasks has both positive and negative solutions. Archive for Mathematical Logic, 2002, 41, 507-523.	0.2	22
20	Small forcing makes any cardinal superdestructible. Journal of Symbolic Logic, 1998, 63, 51-58.	0.4	18
21	Diamond (on the regulars) can fail at any strongly unfoldable cardinal. Annals of Pure and Applied Logic, 2006, 144, 83-95.	0.3	17
22	Tall cardinals. Mathematical Logic Quarterly, 2009, 55, 68-86.	0.2	17
23	Resurrection axioms and uplifting cardinals. Archive for Mathematical Logic, 2014, 53, 463-485.	0.2	16
24	Pf ≠NPf for almost all f. Mathematical Logic Quarterly, 2003, 49, 536-540.	0.2	15
25	A Natural Model of the Multiverse Axioms. Notre Dame Journal of Formal Logic, 2010, 51, .	0.2	15
26	Generalizations of the Kunen inconsistency. Annals of Pure and Applied Logic, 2012, 163, 1872-1890.	0.3	15
27	Large cardinals with few measures. Proceedings of the American Mathematical Society, 2007, 135, 2291-2301.	0.4	14
28	The ground axiom is consistent with V \$eq \$ HOD. Proceedings of the American Mathematical Society, 2008, 136, 2943-2949.	0.4	14
29	Exactly controlling the non-supercompact strongly compact cardinals. Journal of Symbolic Logic, 2003, 68, 669-688.	0.4	12
30	Is the Dream Solution of the Continuum Hypothesis Attainable?. Notre Dame Journal of Formal Logic, 2015, 56, .	0.2	12
31	Superdestructibility: A dual to Laver's indestructibility. Journal of Symbolic Logic, 1998, 63, 549-554.	0.4	11
32	Indestructible Weakly Compact Cardinals and the Necessity of Supercompactness for Certain Proof Schemata. Mathematical Logic Quarterly, 2001, 47, 563-571.	0.2	11
33	THE MODAL LOGIC OF SET-THEORETIC POTENTIALISM AND THE POTENTIALIST MAXIMALITY PRINCIPLES. Review of Symbolic Logic, 2022, 15, 1-35.	0.7	11
34	A MULTIVERSE PERSPECTIVE ON THE AXIOM OF CONSTRUCTIBILITY. Lecture Notes Series, Institute for Mathematical Sciences, 2014, , 25-45.	0.2	11
35	Indestructible Strong Unfoldability. Notre Dame Journal of Formal Logic, 2010, 51, .	0.2	10
36	Structural connections between a forcing class and its modal logic. Israel Journal of Mathematics, 2015, 207, 617-651.	0.4	10

JOEL DAVID HAMKINS

#	Article	IF	CITATIONS
37	Canonical seeds and Prikry trees. Journal of Symbolic Logic, 1997, 62, 373-396.	0.4	9
38	Every group has a terminating transfinite automorphism tower. Proceedings of the American Mathematical Society, 1998, 126, 3223-3226.	0.4	9
39	Degrees of rigidity for Souslin trees. Journal of Symbolic Logic, 2009, 74, 423-454.	0.4	9
40	Infinite Time Decidable Equivalence Relation Theory. Notre Dame Journal of Formal Logic, 2011, 52, .	0.2	9
41	Pointwise definable models of set theory. Journal of Symbolic Logic, 2013, 78, 139-156.	0.4	9
42	THE EXACT STRENGTH OF THE CLASS FORCING THEOREM. Journal of Symbolic Logic, 2020, 85, 869-905.	0.4	9
43	Algebraicity and Implicit Definability in Set Theory. Notre Dame Journal of Formal Logic, 2016, 57, .	0.2	9
44	With infinite utility, more needn't be better. Australasian Journal of Philosophy, 2000, 78, 231-240.	0.5	8
45	The Wholeness Axioms and V=HOD. Archive for Mathematical Logic, 2001, 40, 1-8.	0.2	8
46	EVERY COUNTABLE MODEL OF SET THEORY EMBEDS INTO ITS OWN CONSTRUCTIBLE UNIVERSE. Journal of Mathematical Logic, 2013, 13, 1350006.	0.6	8
47	Large cardinals need not be large in HOD. Annals of Pure and Applied Logic, 2015, 166, 1186-1198.	0.3	8
48	Infinite Time Computable Model Theory. , 2008, , 521-557.		8
49	Utilitarianism in Infinite Worlds. Utilitas, 2000, 12, 91-96.	0.4	7
50	Unfoldable cardinals and the GCH. Journal of Symbolic Logic, 2001, 66, 1186-1198.	0.4	7
51	Ehrenfeucht's Lemma in Set Theory. Notre Dame Journal of Formal Logic, 2018, 59, .	0.2	7
52	Inner models with large cardinal features usually obtained by forcing. Archive for Mathematical Logic, 2012, 51, 257-283.	0.2	6
53	Superstrong and other large cardinals are never Laver indestructible. Archive for Mathematical Logic, 2016, 55, 19-35.	0.2	6
54	A model of the generic Vopěnka principle in which the ordinals are not Mahlo. Archive for Mathematical Logic, 2019, 58, 245-265.	0.2	6

#	Article	IF	CITATIONS
55	Some Second Order Set Theory. Lecture Notes in Computer Science, 2008, , 36-50.	1.0	6
56	The Set-theoretic Multiverse : A Natural Context for Set Theory(<special section="">Mathematical Logic) Tj ETQq0 0</special>	0.rgBT /O	verlock 10 T

57	Post's Problem for ordinal register machines: An explicit approach. Annals of Pure and Applied Logic, 2009, 160, 302-309.	0.3	5
58	Set-theoretic blockchains. Archive for Mathematical Logic, 2019, 58, 965-997.	0.2	5
59	Moving Up and Down in the Generic Multiverse. Lecture Notes in Computer Science, 2013, , 139-147.	1.0	5
60	Changing the heights of automorphism towers. Annals of Pure and Applied Logic, 2000, 102, 139-157.	0.3	4
61	Infinitary Computability with Infinite Time Turing Machines. Lecture Notes in Computer Science, 2005, , 180-187.	1.0	4
62	The proper and semi-proper forcing axioms for forcing notions that preserve \$aleph _2\$ or \$aleph _3\$. Proceedings of the American Mathematical Society, 2008, 137, 1823-1833.	0.4	4
63	Strongly uplifting cardinals and the boldface resurrection axioms. Archive for Mathematical Logic, 2017, 56, 1115-1133.	0.2	4
64	ZFC PROVES THAT THE CLASS OF ORDINALS IS NOT WEAKLY COMPACT FOR DEFINABLE CLASSES. Journal of Symbolic Logic, 2018, 83, 146-164.	0.4	4
65	BI-INTERPRETATION IN WEAK SET THEORIES. Journal of Symbolic Logic, 2021, 86, 609-634.	0.4	4
66	The least weakly compact cardinal can be unfoldable, weakly measurable and nearly \$\${heta}\$\$ Î, -supercompact. Archive for Mathematical Logic, 2015, 54, 491-510.	0.2	3
67	THE IMPLICITLY CONSTRUCTIBLE UNIVERSE. Journal of Symbolic Logic, 2019, 84, 1403-1421.	0.4	3
68	Inner-Model Reflection Principles. Studia Logica, 2020, 108, 573-595.	0.4	3
69	A Survey of Infinite Time Turing Machines. Lecture Notes in Computer Science, 2007, , 62-71.	1.0	3
70	Set-theoretic mereology. Logic and Logical Philosophy, 0, , .	0.3	3
71	THE Σ ₁ -DEFINABLE UNIVERSAL FINITE SEQUENCE. Journal of Symbolic Logic, 2022, 87, 783-801.	0.4	2
72	Changing the heights of automorphism towers by forcing with Souslin trees over L. Journal of Symbolic Logic, 2008, 73, 614-633.	0.4	1

JOEL DAVID HAMKINS

#	Article	IF	CITATIONS
73	Computable Quotient Presentations of Models of Arithmetic and Set Theory. Lecture Notes in Computer Science, 2017, , 140-152.	1.0	1
74	When does every definable nonempty set have a definable element?. Mathematical Logic Quarterly, 2019, 65, 407-411.	0.2	1
75	The rigid relation principle, a new weak choice principle. Mathematical Logic Quarterly, 2012, 58, 394-398.	0.2	Ο
76	Infinite time Turing machines and an application to the hierarchy of equivalence relations on the reals. , 0, , 33-49.		0
77	Incomparable ï‰ 1 â€like models of set theory. Mathematical Logic Quarterly, 2017, 63, 66-76.	0.2	0
78	The Mate-in-n Problem of Infinite Chess Is Decidable. Lecture Notes in Computer Science, 2012, , 78-88.	1.0	0