Yitao Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/716151/publications.pdf Version: 2024-02-01

Υίτλο Ρλι

#	Article	IF	CITATIONS
1	First Report on the Bioaccumulation and Trophic Transfer of Perfluoroalkyl Ether Carboxylic Acids in Estuarine Food Web. Environmental Science & Technology, 2022, 56, 6046-6055.	4.6	49
2	Nontargeted Identification and Temporal Trends of Per- and Polyfluoroalkyl Substances in a Fluorochemical Industrial Zone and Adjacent Taihu Lake. Environmental Science & Technology, 2022, 56, 7986-7996.	4.6	39
3	Associations between six common per- and polyfluoroalkyl substances and estrogens in neonates of China. Journal of Hazardous Materials, 2021, 407, 124378.	6.5	33
4	Response to Comment on "Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs)― Overlooked Interactions with Perfluorooctanoic Acid. Environmental Science & Technology, 2021, 55, 7752-7754.	4.6	0
5	Occurrence of Novel Perfluoroalkyl Ether Carboxylic Acids in River Water and Human Urine Quantified by a Simple Liquid–Liquid Microextraction Approach Coupled with LC–MS/MS. Environmental Science and Technology Letters, 2021, 8, 773-778.	3.9	10
6	Prenatal exposure to poly-/per-fluoroalkyl substances is associated with alteration of lipid profiles in cord-blood. Metabolomics, 2021, 17, 103.	1.4	14
7	Analysis of emerging per- and polyfluoroalkyl substances: Progress and current issues. TrAC - Trends in Analytical Chemistry, 2020, 124, 115481.	5.8	64
8	Association between exposure to per- and polyfluoroalkyl substances and blood glucose in pregnant women. International Journal of Hygiene and Environmental Health, 2020, 230, 113596.	2.1	14
9	Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs): Occurrence and Association with Serum Biochemical Parameters in Residents Living Near a Fluorochemical Plant in China. Environmental Science & Technology, 2020, 54, 13389-13398.	4.6	78
10	Exposure to per- and polyfluoroalkyl substances (PFASs) in serum versus semen and their association with male reproductive hormones. Environmental Pollution, 2020, 266, 115330.	3.7	43
11	Temporal Trends in Prenatal Exposure (1998–2018) to Emerging and Legacy Per- and Polyfluoroalkyl Substances (PFASs) in Cord Plasma from the Beijing Cord Blood Bank, China. Environmental Science & Technology, 2020, 54, 12850-12859.	4.6	26
12	Associations of per-/polyfluoroalkyl substances with glucocorticoids and progestogens in newborns. Environment International, 2020, 140, 105636.	4.8	38
13	Per- and polyfluoroalkyl substances (PFASs) in the blood of two colobine monkey species from China: Occurrence and exposure pathways. Science of the Total Environment, 2019, 674, 524-531.	3.9	18
14	Chronic exposure to 6:2 chlorinated polyfluorinated ether sulfonate acid (F-53B) induced hepatotoxic effects in adult zebrafish and disrupted the PPAR signaling pathway in their offspring. Environmental Pollution, 2019, 249, 550-559.	3.7	56
15	Parental exposure to 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) induced transgenerational thyroid hormone disruption in zebrafish. Science of the Total Environment, 2019, 665, 855-863.	3.9	46
16	Profiles of Emerging and Legacy Per-/Polyfluoroalkyl Substances in Matched Serum and Semen Samples: New Implications for Human Semen Quality. Environmental Health Perspectives, 2019, 127, 127005.	2.8	72
17	Occurrence and Tissue Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids and Legacy Per/Polyfluoroalkyl Substances in Black-Spotted Frog (<i>Pelophylax nigromaculatus</i>). Environmental Science & Technology, 2018, 52, 982-990.	4.6	143
18	Two-generational reproductive toxicity assessment of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B, a novel alternative to perfluorooctane sulfonate) in zebrafish. Environmental Pollution, 2018, 243, 1517-1527.	3.7	60

Υίταο Ράν

#	Article	IF	CITATIONS
19	Penetration of PFASs Across the Blood Cerebrospinal Fluid Barrier and Its Determinants in Humans. Environmental Science & Technology, 2018, 52, 13553-13561.	4.6	97
20	Worldwide Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water. Environmental Science & Technology, 2018, 52, 7621-7629.	4.6	367
21	Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment. Environmental Pollution, 2018, 241, 684-691.	3.7	54
22	Hepatotoxic Effects of Hexafluoropropylene Oxide Trimer Acid (HFPO-TA), A Novel Perfluorooctanoic Acid (PFOA) Alternative, on Mice. Environmental Science & Technology, 2018, 52, 8005-8015.	4.6	110
23	6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. Aquatic Toxicology, 2017, 185, 67-75.	1.9	117
24	Acot1 is a sensitive indicator for PPARα activation after perfluorooctanoic acid exposure in primary hepatocytes of Sprague-Dawley rats. Toxicology in Vitro, 2017, 42, 299-307.	1.1	8
25	Novel Chlorinated Polyfluorinated Ether Sulfonates and Legacy Per-/Polyfluoroalkyl Substances: Placental Transfer and Relationship with Serum Albumin and Glomerular Filtration Rate. Environmental Science & Technology, 2017, 51, 634-644.	4.6	183
26	Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice. Archives of Toxicology, 2017, 91, 2909-2919.	1.9	43
27	Dietary exposure to di-isobutyl phthalate increases urinary 5-methyl-2′-deoxycytidine level and affects reproductive function in adult male mice. Journal of Environmental Sciences, 2017, 61, 14-23.	3.2	16
28	First Report on the Occurrence and Bioaccumulation of Hexafluoropropylene Oxide Trimer Acid: An Emerging Concern. Environmental Science & Technology, 2017, 51, 9553-9560.	4.6	186
29	6:2 fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis. Aquatic Toxicology, 2017, 190, 53-61.	1.9	31
30	Associations of urinary 5-methyl-2′-deoxycytidine and 5-hydroxymethyl-2′-deoxycytidine with phthalate exposure and semen quality in 562 Chinese adult men. Environment International, 2016, 94, 583-590.	4.8	15
31	Perfluorooctanoic acid exposure alters polyunsaturated fatty acid composition, induces oxidative stress and activates the AKT/AMPK pathway in mouse epididymis. Chemosphere, 2016, 158, 143-153.	4.2	36
32	Association between phthalate metabolites and biomarkers of reproductive function in 1066 Chinese men of reproductive age. Journal of Hazardous Materials, 2015, 300, 729-736.	6.5	62