Tuan-Anh Le

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/71615/publications.pdf

Version: 2024-02-01

840776 794594 27 370 11 19 h-index citations g-index papers 27 27 27 333 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels. Journal of Magnetism and Magnetic Materials, 2017, 427, 181-187.	2.3	65
2	Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery. Journal of Magnetism and Magnetic Materials, 2017, 427, 345-351.	2.3	35
3	Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery. Sensors, 2017, 17, 2050.	3.8	33
4	A Novel Magnetic Actuation Scheme to Disaggregate Nanoparticles and Enhance Passage across the Blood–Brain Barrier. Nanomaterials, 2018, 8, 3.	4.1	31
5	A Soft Magnetic Core can Enhance Navigation Performance of Magnetic Nanoparticles in Targeted Drug Delivery. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1573-1584.	5.8	22
6	A Novel Shared Guidance Scheme for Intelligent Haptic Interaction Based Swarm Control of Magnetic Nanoparticles in Blood Vessels. IEEE Access, 2020, 8, 106714-106725.	4.2	21
7	Haptic-Based Manipulation Scheme of Magnetic Nanoparticles in a Multi-Branch Blood Vessel for Targeted Drug Delivery. Micromachines, 2018, 9, 14.	2.9	19
8	Theoretical Analysis for Wireless Magnetothermal Deep Brain Stimulation Using Commercial Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 2873.	4.1	18
9	Swarm of magnetic nanoparticles steering in multi-bifurcation vessels under fluid flow. Journal of Micro-Bio Robotics, 2020, 16, 137-145.	2.1	18
10	A Magnetic Particle Imaging-Based Navigation Platform for Magnetic Nanoparticles Using Interactive Manipulation of a Virtual Field Free Point to Ensure Targeted Drug Delivery. IEEE Transactions on Industrial Electronics, 2021, 68, 12493-12503.	7.9	16
11	Simulation studies of a novel electromagnetic actuation scheme for focusing magnetic micro/nano-carriers into a deep target region. AIP Advances, 2017, 7, .	1.3	11
12	Band-Stop Filter Analysis and Design for 1D Magnetic Particle Imaging Hybrid System. Journal of Nanoscience and Nanotechnology, 2016, 16, 8492-8495.	0.9	10
13	The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications. Nanomaterials, 2021, 11, 1096.	4.1	10
14	Offline Programming Guidance for Swarm Steering of Micro-/Nano Magnetic Particles in a Dynamic Multichannel Vascular Model. IEEE Robotics and Automation Letters, 2022, 7, 3977-3984.	5.1	10
15	Optimal Design and Implementation of a Novel Two-Dimensional Electromagnetic Navigation System That Allows Focused Heating of Magnetic Nanoparticles. IEEE/ASME Transactions on Mechatronics, 2021, 26, 551-562.	5.8	8
16	Development of Rat-Scale Magnetic Particle Spectroscopy for Functional Magnetic Particle Imaging. IEEE Magnetics Letters, 2020, 11, 1-5.	1.1	7
17	A modified functionalized magnetic Field for nanoparticle guidance in magnetic drug targeting. , 2016, , .		6
18	Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 8895.	4.1	6

#	Article	IF	Citations
19	Functionalized electromagnetic actuation method for aggregated nanoparticles steering., 2017, 2017, 885-888.		5
20	An electromagnetic navigation system with real-time 2D magnetic particle imaging for targeted drug delivery. , 2017, , .		5
21	Electromagnetic Actuation Scheme for Swarm of Magnetic Nanoparticles Steering in Multi-bifurcation. , 2019, , .		4
22	Electromagnetic Actuation System for Focused Capturing of Magnetic Particles With a Half of Static Saddle Potential Energy Configuration. IEEE Transactions on Biomedical Engineering, 2021, 68, 869-880.	4.2	4
23	Development of a magnetic nanoparticles guidance system for interleaved actuation and MPI-based monitoring. , 2016, , .		2
24	An Optimal Design of an Electromagnetic Actuator for Targeting Magnetic Micro-/Nano-Carriers in a Desired Region. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	2
25	BMRC: A Bitmap-Based Maximum Range Counting Approach for Temporal Data in Sensor Monitoring Networks. Sensors, 2017, 17, 2051.	3.8	1
26	Studies on Aggregated Nanoparticles Steering during Deep Brain Membrane Crossing. Nanomaterials, 2021, 11, 2754.	4.1	1
27	Hardware implementation of a 1D MPI hybrid system for targeted drug delivery. , 2015, , .		0