Markus Greule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7161435/publications.pdf Version: 2024-02-01

MADKIIS CDEIILE

#	Article	IF	CITATIONS
1	Evidence for methane production by saprotrophic fungi. Nature Communications, 2012, 3, 1046.	5.8	169
2	Exogenous addition of H 2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. Waste Management, 2017, 68, 146-156.	3.7	110
3	Improved rapid authentication of vanillin using δ13C and δ2H values. European Food Research and Technology, 2010, 231, 933-941.	1.6	52
4	A rapid and precise method for determination of D/H ratios of plant methoxyl groups. Rapid Communications in Mass Spectrometry, 2008, 22, 3983-3988.	0.7	49
5	Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. Journal of Breath Research, 2016, 10, 016003.	1.5	41
6	ſ´ ² H, ſ´ ¹³ C and ſ´ ¹⁸ O from whole wood, <i>α</i> -cellulose and lignin methoxyl groups in <i>Pinus sylvestris</i> : a multi-parameter approach. Isotopes in Environmental and Health Studies, 2015, 51, 553-568.	0.5	36
7	Identification of methanogenic pathways in anaerobic digesters using stable carbon isotopes. Engineering in Life Sciences, 2010, 10, 509-514.	2.0	34
8	A simple rapid method to precisely determine ¹³ C/ ¹² C ratios of plant methoxyl groups. Rapid Communications in Mass Spectrometry, 2009, 23, 1710-1714.	0.7	33
9	Measurements of 13C/12C Methane from Anaerobic Digesters: Comparison of Optical Spectrometry with Continuous-Flow Isotope Ratio Mass Spectrometry. Environmental Science & amp; Technology, 2010, 44, 5067-5073.	4.6	30
10	lsotopic characterization of vanillin ex glucose by GC-IRMS - New challenge for natural vanilla flavour authentication?. Food Control, 2019, 106, 106735.	2.8	30
11	Non-microbial methane formation in oxic soils. Biogeosciences, 2012, 9, 5291-5301.	1.3	29
12	Non-microbial methane emissions from fresh leaves: Effects of physical wounding and anoxia. Atmospheric Environment, 2011, 45, 4915-4921.	1.9	26
13	lsotopic composition of H ₂ from wood burning: Dependency on combustion efficiency, moisture content, and <i>l´</i> D of local precipitation. Journal of Geophysical Research, 2010, 115, .	3.3	22
14	Mean annual temperatures of mid-latitude regions derived from δ2H values of wood lignin methoxyl groups and its implications for paleoclimate studies. Science of the Total Environment, 2017, 574, 1276-1282.	3.9	22
15	Feed additives: authenticity assessment using multicomponent-/multielement-isotope ratio mass spectrometry. European Food Research and Technology, 2008, 227, 767-776.	1.6	21
16	Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation. Frontiers in Microbiology, 2014, 5, 523.	1.5	21
17	Late Quaternary relative humidity changes from Mt. Kilimanjaro, based on a coupled 2H-18O biomarker paleohygrometer approach. Quaternary International, 2017, 438, 116-130.	0.7	21
18	Organic compounds in fluid inclusions of Archean quartz—Analogues of prebiotic chemistry on early Earth. PLoS ONE, 2017, 12, e0177570.	1.1	21

MARKUS GREULE

#	Article	IF	CITATIONS
19	Vanilla authenticity control by DNA barcoding and isotope data aggregation. Flavour and Fragrance Journal, 2017, 32, 228-237.	1.2	20
20	Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes. Atmospheric Chemistry and Physics, 2019, 19, 1703-1719.	1.9	20
21	Stable hydrogen-isotope analysis of methyl chloride emitted from heated halophytic plants. Atmospheric Environment, 2012, 62, 584-592.	1.9	18
22	Stable hydrogen and carbon isotope ratios of methoxyl groups during plant litter degradation. Isotopes in Environmental and Health Studies, 2015, 51, 143-154.	0.5	17
23	Earliest Eocene cold period and polar amplification - Insights from δ2H values of lignin methoxyl groups of mummified wood. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505, 326-336.	1.0	17
24	Stable isotope determination of ester and ether methyl moieties in plant methoxyl groups. Isotopes in Environmental and Health Studies, 2011, 47, 470-482.	0.5	16
25	Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Scientific Reports, 2015, 4, 7010.	1.6	16
26	A Stable Isotope Approach to Assessing Water Loss in Fruits and Vegetables during Storage. Journal of Agricultural and Food Chemistry, 2015, 63, 1974-1981.	2.4	15
27	Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria. MicrobiologyOpen, 2013, 2, 893-900.	1.2	14
28	Climate signals in δ13C of wood lignin methoxyl groups from high-elevation larch trees. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 445, 60-71.	1.0	14
29	Stable hydrogen isotope values of lignin methoxyl groups of four tree species across Germany and their implication for temperature reconstruction. Science of the Total Environment, 2017, 579, 263-271.	3.9	14
30	Three wood isotopic reference materials for δ2H and δ13C measurements of plant methoxy groups. Chemical Geology, 2020, 533, 119428.	1.4	14
31	Insolation and Greenhouse Gas Forcing of the South American Monsoon System Across Three Glacialâ€Interglacial Cycles. Geophysical Research Letters, 2020, 47, e2020GL087948.	1.5	14
32	Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of ¹³ C carbon isotopes. Isotopes in Environmental and Health Studies, 2013, 49, 365-377.	0.5	13
33	Warm season precipitation signal in <i>δ</i> ² H values of wood lignin methoxyl groups from high elevation larch trees in Switzerland. Rapid Communications in Mass Spectrometry, 2017, 31, 1589-1598.	0.7	13
34	Chloromethane formation and degradation in the fern phyllosphere. Science of the Total Environment, 2018, 634, 1278-1287.	3.9	13
35	D/H ratios of methoxyl groups of the sedimentary organic matter of Lake Holzmaar (Eifel, Germany): A potential palaeoclimate/-hydrology proxy. Geochimica Et Cosmochimica Acta, 2014, 142, 39-52.	1.6	12
36	Sources and sinks of chloromethane in a salt marsh ecosystem: constraints from concentration and stable isotope measurements of laboratory incubation experiments. Environmental Sciences: Processes and Impacts, 2020, 22, 627-641.	1.7	12

MARKUS GREULE

#	Article	IF	CITATIONS
37	Chloromethane Degradation in Soils: A Combined Microbial and Twoâ€Dimensional Stable Isotope Approach. Journal of Environmental Quality, 2018, 47, 254-262.	1.0	11
38	Methyl sulfates as methoxy isotopic reference materials for <i>δ</i> ¹³ C and <i>δ</i> ² H measurements. Rapid Communications in Mass Spectrometry, 2019, 33, 343-350.	0.7	11
39	The stable carbon isotope signature of methane produced by saprotrophic fungi. Biogeosciences, 2020, 17, 3891-3901.	1.3	11
40	Heptan-2-ol and trans-linalool oxide (fur.) as inherent indicators of natural blackberry flavour using enantioselective and multielement-MDGC-IRMS analysis. European Food Research and Technology, 2008, 226, 1001-1006.	1.6	10
41	Position-specific isotope analysis of the methyl group carbon in methylcobalamin for the investigation of biomethylation processes. Analytical and Bioanalytical Chemistry, 2013, 405, 2833-2841.	1.9	10
42	Chloromethane emissions in human breath. Science of the Total Environment, 2017, 605-606, 405-410.	3.9	10
43	Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl. Atmospheric Chemistry and Physics, 2018, 18, 6625-6635.	1.9	10
44	Measurements and applications of δ2H values of wood lignin methoxy groups for paleoclimatic studies. Quaternary Science Reviews, 2021, 268, 107107.	1.4	10
45	Tree-ring Î'2H values from lignin methoxyl groups indicate sensitivity to European-scale temperature changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546, 109665.	1.0	9
46	Comment on Authenticity and Traceability of <i>Vanilla</i> Flavors by Analysis of Stable Isotopes of Carbon and Hydrogen. Journal of Agricultural and Food Chemistry, 2015, 63, 5305-5306.	2.4	7
47	A fast and sensitive method for the continuous in situ determination of dissolved methane and its δ ¹³ Câ€isotope ratio in surface waters. Limnology and Oceanography: Methods, 2018, 16, 273-285.	1.0	7
48	Chlorine Isotope Fractionation of the Major Chloromethane Degradation Processes in the Environment. Environmental Science & amp; Technology, 2020, 54, 1634-1645.	4.6	7
49	Methane oxidation in industrial biogas plants—Insights in a novel methanotrophic environment evidenced by pmoA gene analyses and stable isotope labelling studies. Journal of Biotechnology, 2018, 270, 77-84.	1.9	2