
Yanhong Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7161156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultralight Coral-like hierarchical Fe/CNTs/Porous carbon composite derived from biomass with tunable microwave absorption performance. Applied Surface Science, 2022, 571, 151349.	6.1	25
2	Ultralight and Low-Cost Structural Absorbers With Enhanced Microwave Absorption Performance Based on Sustainable Waste Biomass. IEEE Transactions on Antennas and Propagation, 2022, 70, 401-409.	5.1	15
3	Controlling the microstructure of biomass-derived porous carbon to assemble structural absorber for broadening bandwidth. Carbon, 2022, 198, 70-79.	10.3	23
4	Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band. Journal of Magnetism and Magnetic Materials, 2020, 497, 166075.	2.3	57
5	Effect of Surface Structure and Composition on the Electromagnetic Properties of Ti ₃ C ₂ T _{<i>x</i>} MXenes for Highly Efficient Electromagnetic Wave Absorption. Journal of Physical Chemistry C, 2020, 124, 19666-19674.	3.1	36
6	Reduced Graphene Oxide Aerogels with Uniformly Self-Assembled Polyaniline Nanosheets for Electromagnetic Absorption. ACS Applied Nano Materials, 2020, 3, 5978-5986.	5.0	22
7	Broadband spatial self-phase modulation and ultrafast response of MXene Ti ₃ C ₂ T _x (T=O, OH or F). Nanophotonics, 2020, 9, 2415-2424.	6.0	28
8	MnO2 nanostructures deposited on graphene foams for broadband and lightweight electromagnetic absorption. Journal of Alloys and Compounds, 2019, 810, 151744.	5.5	21
9	Preparation of beaded chains ZrC/C/SiC nanocomposites and their microwave absorption properties. Materials Letters, 2019, 255, 126579.	2.6	10
10	Synthesis and electromagnetic wave absorption performance of NiCo ₂ O ₄ nanomaterials with different nanostructures. CrystEngComm, 2019, 21, 4568-4577.	2.6	33
11	Fe/nanoporous carbon hybrid derived from metal–organic framework for highly effective microwave absorption. Applied Organometallic Chemistry, 2019, 33, e4991.	3.5	15
12	Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption. Journal of Magnetism and Magnetic Materials, 2019, 487, 165334.	2.3	71
13	Design and optimization of a flexible water-based microwave absorbing metamaterial. Applied Physics Express, 2019, 12, 057003.	2.4	39
14	A Graphite-Based Metamaterial Microwave Absorber. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1016-1020.	4.0	24
15	Ni@C composites derived from Ni-based metal organic frameworks with a lightweight, ultrathin, broadband and highly efficient microwave absorbing properties. Applied Physics Express, 2019, 12, 011001.	2.4	27
16	Impedance matching for omnidirectional and polarization insensitive broadband absorber based on carbonyl iron powders. Journal of Magnetism and Magnetic Materials, 2019, 476, 349-354.	2.3	24
17	Microwave Absorption Enhancement of Fe/C Core–Shell Hybrid Derived from a Metal-Organic Framework. Nano, 2019, 14, 1950002.	1.0	14
18	Highly stable femtosecond pulse generation from a MXene Ti ₃ C ₂ T _x (T = F, O, or OH) mode-locked fiber laser. Photonics Research, 2019, 7, 260.	7.0	93

Yanhong Zou

#	Article	lF	CITATIONS
19	The effect of microstructure of graphene foam on microwave absorption properties. Journal of Magnetism and Magnetic Materials, 2018, 458, 217-224.	2.3	37
20	Tunable Terahertz Absorption with Optical Tamm State in the Graphene-Bragg Reflector Configuration. Advances in Condensed Matter Physics, 2018, 2018, 1-6.	1.1	1
21	Improving the Electromagnetic Wave Absorption Properties of the Layered MoS ₂ by Cladding with Ni Nanoparticles. Journal of the Physical Society of Japan, 2018, 87, 054402.	1.6	29
22	An ultra-broadband and lightweight fishnet-like absorber in microwave region. Journal Physics D: Applied Physics, 2018, 51, 285002.	2.8	33
23	Carbonyl iron/graphite microspheres with good impedance matching for ultra-broadband and highly efficient electromagnetic absorption. Optical Materials Express, 2018, 8, 3319.	3.0	35
24	Graphene Q-Switched Vectorial Fiber Laser With Switchable Polarized Output. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 26-32.	2.9	16
25	Ultrafast pulse generation from erbium-doped fiber laser modulated by hybrid organic–inorganic halide perovskites. Applied Physics Letters, 2017, 110, .	3.3	35
26	Broadband Absorber for the Microwave Region Using Ball-Milled Graphite Gratings. Journal of the Physical Society of Japan, 2017, 86, 104801.	1.6	12
27	Switchable self-defocusing and focusing in nearly isotropic photonic crystals via enhanced inverse diffraction. Physical Review A, 2015, 91, .	2.5	6
28	Design of wireless flash programming based on Freescale Mpxy8300 sensor. , 2014, , .		1
29	Interaction between graphene and metamaterials: split rings vs wire pairs. Optics Express, 2012, 20, 12198.	3.4	58
30	Improved Microwave Absorption of Carbonyl Iron Powder by the Array of Subwavelength Metallic Cut Wires. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 441-445.	2.9	8
31	A passivated codoping approach to tailor the band edges of TiO2 for efficient photocatalytic degradation of organic pollutants. Applied Physics Letters, 2009, 95, 012106.	3.3	43
32	Enhancing microwave absorption properties of materials using metamaterials. , 2008, , .		1
33	Doppler effect of Laguerre-Gaussian beams propagating in left-handed materials. , 2008, , .		3
34	Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials. Applied Physics Letters, 2008, 93, .	3.3	45
35	Omnidirectional linear polarizer based on uniaxial dielectric-magnetic materials. , 2008, , .		0