
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7160101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Effects of Platelet Factor 4 (CXCL4) and Its Non-Allelic Variant (CXCL4L1) on Cultured Human Vascular Smooth Muscle Cells. International Journal of Molecular Sciences, 2022, 23, 580.	1.8	6
2	<scp>JAMâ€A</scp> is a multifaceted regulator in hepatic fibrogenesis, supporting <scp>LSEC</scp> integrity and stellate cell quiescence. Liver International, 2022, 42, 1185-1203.	1.9	5
3	Characterization of cerebral small vessel disease by neutrophil and platelet activation markers using artificial intelligence. Journal of Neuroimmunology, 2022, 367, 577863.	1.1	6
4	Extracellular Vesicles from Steatotic Hepatocytes Provoke Pro-Fibrotic Responses in Cultured Stellate Cells. Biomolecules, 2022, 12, 698.	1.8	3
5	Jam-A Unleashed Incites Thromboinflammatory Coronary Artery Disease. JACC Basic To Translational Science, 2022, 7, 462-464.	1.9	Ο
6	Molecular Detection of Venous Thrombosis in Mouse Models Using SPECT/CT. Biomolecules, 2022, 12, 829.	1.8	1
7	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS ONE, 2021, 16, e0244736.	1.1	12
8	The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis, 2021, 319, 132-141.	0.4	25
9	Rapid Internalization and Nuclear Translocation of CCL5 and CXCL4 in Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 7332.	1.8	2
10	Inhibition of Phosphodiesterase 3A by Cilostazol Dampens Proinflammatory Platelet Functions. Cells, 2021, 10, 1998.	1.8	6
11	Combined Antiplatelet Therapy Reduces the Proinflammatory Properties of Activated Platelets. TH Open, 2021, 05, e533-e542.	0.7	5
12	Conformation-Crooking CXCL4 to Unravel Autoimmune Heparin-Induced Thrombocytopenia. Thrombosis and Haemostasis, 2021, 121, 258-260.	1.8	0
13	Chemokines modulate glycan binding and the immunoregulatory activity of galectins. Communications Biology, 2021, 4, 1415.	2.0	5
14	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		0
15	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		0
16	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		0
17	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		0
18	Platelets and coagulation factors: Established and novel roles in atherosclerosis and atherothrombosis. Atherosclerosis, 2020, 307, 78-79.	0.4	8

#	Article	IF	CITATIONS
19	Complementary roles of platelet αIIbβ3 integrin, phosphatidylserine exposure and cytoskeletal rearrangement in the release of extracellular vesicles. Atherosclerosis, 2020, 310, 17-25.	0.4	12
20	Structural characterization of anti-CCL5 activity of the tick salivary protein evasin-4. Journal of Biological Chemistry, 2020, 295, 14367-14378.	1.6	11
21	Tick Saliva Protein Evasin-3 Allows for Visualization of Inflammation in Arteries through Interactions with CXC-Type Chemokines Deposited on Activated Endothelium. Bioconjugate Chemistry, 2020, 31, 948-955.	1.8	6
22	Vaping, vapor, vesicles! Electronic cigarettes provoke vascular extracellular vesicle release in healthy volunteers. Atherosclerosis, 2020, 301, 79-81.	0.4	3
23	Lysophosphatidylcholine in Platelet Microvesicles: The Grease for Cardiovascular Disease. Thrombosis and Haemostasis, 2019, 119, 1202-1204.	1.8	5
24	Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. Journal of Biological Chemistry, 2019, 294, 12370-12379.	1.6	17
25	Proteomic analysis reveals procoagulant properties of cigarette smoke-induced extracellular vesicles. Journal of Extracellular Vesicles, 2019, 8, 1585163.	5.5	33
26	Chemokines as Therapeutic Targets in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 583-592.	1.1	96
27	No hearty reception: infusion of CXCL4 impedes tissue repair by macrophages after myocardial infarction. Cardiovascular Research, 2019, 115, 264-265.	1.8	1
28	Characterisation of Citrullinated TFPI and Truncated TFPI Constructs By PAD4 in Model and Plasma Systems. Blood, 2019, 134, 2390-2390.	0.6	1
29	Laminar Flow-based Assays to Investigate Leukocyte Recruitment on Cultured Vascular Cells and Adherent Platelets. Journal of Visualized Experiments, 2018, , .	0.2	2
30	Molecular Ultrasound Imaging of Junctional Adhesion Molecule A Depicts Acute Alterations in Blood Flow and Early Endothelial Dysregulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 40-48.	1.1	34
31	Editorial: Extracellular Vesicle-Mediated Processes in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2018, 5, 133.	1.1	6
32	Extracellular Vesicles as Biomarkers in Cardiovascular Disease; Chances and Risks. Frontiers in Cardiovascular Medicine, 2018, 5, 113.	1.1	112
33	Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Scientific Reports, 2018, 8, 10647.	1.6	63
34	Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Frontiers in Cardiovascular Medicine, 2018, 5, 36.	1.1	69
35	Deletion of junctional adhesion molecule A from platelets increases earlyâ€stage neointima formation after wire injury in hyperlipidemic mice. Journal of Cellular and Molecular Medicine, 2017, 21, 1523-1531.	1.6	16
36	Platelet extracellular vesicles induce a proâ€inflammatory smooth muscle cell phenotype. Journal of Extracellular Vesicles, 2017, 6, 1322454.	5.5	81

#	Article	IF	CITATIONS
37	Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 2017, 9, .	5.8	121
38	Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Scientific Reports, 2017, 7, 15297.	1.6	193
39	Platelets: Old Players Revisited 284Platelet microvesicles in vascular inflammation 285Pharmacological depletion of serotonin promotes atherosclerotic plaque formation in apoE-/- mice 286Deletion of junctional adhesion molecule a from platelets increases early stage neointima formation after wire injury in hyperlipidemic mice. Cardiovascular Research, 2016, 111,	1.8	0
40	Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium. Journal of Molecular and Cellular Cardiology, 2016, 99, 57-64.	0.9	32
41	Probing Functional Heteromeric Chemokine Protein–Protein Interactions through Conformationâ€Assisted Oxime Ligation. Angewandte Chemie - International Edition, 2016, 55, 14963-14966.	7.2	16
42	The prowess of platelets in immunity and inflammation. Thrombosis and Haemostasis, 2016, 116, 605-612.	1.8	52
43	Probing Functional Heteromeric Chemokine Protein–Protein Interactions through Conformationâ€Assisted Oxime Ligation. Angewandte Chemie, 2016, 128, 15187-15190.	1.6	1
44	Microvesicles from platelets: novel drivers of vascular inflammation. Thrombosis and Haemostasis, 2015, 114, 228-236.	1.8	88
45	Hyperreactivity of Junctional Adhesion Molecule A-Deficient Platelets Accelerates Atherosclerosis in Hyperlipidemic Mice. Circulation Research, 2015, 116, 587-599.	2.0	67
46	Hck/Fgr Kinase Deficiency Reduces Plaque Growth and Stability by Blunting Monocyte Recruitment and Intraplaque Motility. Circulation, 2015, 132, 490-501.	1.6	27
47	Neutrophil Extracellular Traps as Therapeutic Targets for Inflammatory Disease. American Journal of Pharmacology and Toxicology, 2014, 9, 200-202.	0.7	1
48	CX3CL1, a special deputy at the intersection of platelets and the vessel wall. Thrombosis and Haemostasis, 2014, 111, 567-567.	1.8	0
49	Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome. Thrombosis and Haemostasis, 2014, 112, 1277-1287.	1.8	36
50	Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. Journal of Cellular and Molecular Medicine, 2014, 18, 790-800.	1.6	36
51	Activation of CXCR7 Limits Atherosclerosis and Improves Hyperlipidemia by Increasing Cholesterol Uptake in Adipose Tissue. Circulation, 2014, 129, 1244-1253.	1.6	61
52	Endothelial Junctional Adhesion Molecule-A Guides Monocytes Into Flow-Dependent Predilection Sites of Atherosclerosis. Circulation, 2014, 129, 66-76.	1.6	101
53	Atherogenic mononuclear cell recruitment is facilitated by oxidized lipoprotein-induced endothelial junctional adhesion molecule-A redistribution. Atherosclerosis, 2014, 234, 254-264.	0.4	19
54	CXCR4 blockade induces atherosclerosis by affecting neutrophil function. Journal of Molecular and Cellular Cardiology, 2014, 74, 44-52.	0.9	44

#	Article	IF	CITATIONS
55	Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice. PLoS ONE, 2014, 9, e87452.	1.1	14
56	Chemoselective Oxime Reactions in Proteins and Peptides by Using an Optimized Oxime Strategy: The Demise of Levulinic Acid. ChemBioChem, 2013, 14, 2431-2434.	1.3	16
57	Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Molecular Medicine, 2013, 5, 471-481.	3.3	169
58	Exchange of extracellular domains of CCR1 and CCR5 reveals confined functions in CCL5-mediated cell recruitment. Thrombosis and Haemostasis, 2013, 110, 795-806.	1.8	10
59	CCR6 selectively promotes monocyte mediated inflammation and atherogenesis in mice. Thrombosis and Haemostasis, 2013, 110, 1267-1277.	1.8	21
60	TNF-α and IFN-Î ³ promote lymphocyte adhesion to endothelial junctional regions facilitating transendothelial migration. Journal of Leukocyte Biology, 2013, 95, 265-274.	1.5	37
61	Aging- and activation-induced platelet microparticles suppress apoptosis in monocytic cells and differentially signal to proinflammatory mediator release. American Journal of Blood Research, 2013, 3, 107-23.	0.6	37
62	Hematopoietic Interferon Regulatory Factor 8-Deficiency Accelerates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1613-1623.	1.1	42
63	Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 2012, 125, 1673-1683.	1.6	347
64	Disruption of Platelet-derived Chemokine Heteromers Prevents Neutrophil Extravasation in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 628-636.	2.5	202
65	Contribution of Platelet CX ₃ CR1 to Platelet–Monocyte Complex Formation and Vascular Recruitment During Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1186-1193.	1.1	76
66	Touch of Chemokines. Frontiers in Immunology, 2012, 3, 175.	2.2	103
67	Chemokines and Their Receptors as Therapeutic Targets in Atherosclerosis. , 2012, , 1-30.		0
68	Incorporation of Disulfide Containing Protein Modules into Multivalent Antigenic Conjugates: Generation of Antibodies against the Thrombin-Sensitive Region of Murine Protein S. Journal of the American Chemical Society, 2012, 134, 19318-19321.	6.6	11
69	Platelets: key players in vascular inflammation. Journal of Leukocyte Biology, 2012, 92, 1167-1175.	1.5	82
70	MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. Journal of Clinical Investigation, 2012, 122, 4190-4202.	3.9	436
71	Anti-Inflammatory Therapeutic Approaches to Reduce Acute Atherosclerotic Complications. Current Pharmaceutical Biotechnology, 2012, 13, 37-45.	0.9	18
72	Thrombin Inhibition Prevents Against Severe Atherosclerosis Progression in Prothrombotic Mice. Blood. 2012, 120, 103-103.	0.6	0

#	Article	IF	CITATIONS
73	Double-Edged Role of the CXCL12/CXCR4 Axis in Experimental Myocardial Infarction. Journal of the American College of Cardiology, 2011, 58, 2415-2423.	1.2	114
74	CXCL4L1 inhibits angiogenesis and induces undirected endothelial cell migration without affecting endothelial cell proliferation and monocyte recruitment. Journal of Thrombosis and Haemostasis, 2011, 9, 209-219.	1.9	46
75	Heterophilic chemokine receptor interactions in chemokine signaling and biology. Experimental Cell Research, 2011, 317, 655-663.	1.2	43
76	Cross talk between smooth muscle cells and monocytes/activated monocytes via CX3CL1/CX3CR1 axis augments expression of pro-atherogenic molecules. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2026-2035.	1.9	48
77	Chemokines: established and novel targets in atherosclerosis. EMBO Molecular Medicine, 2011, 3, 713-725.	3.3	93
78	Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death and Disease, 2011, 2, e211-e211.	2.7	113
79	Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. Journal of Experimental Medicine, 2011, 208, 217-225.	4.2	168
80	Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO Journal, 2010, 29, 3952-3966.	3.5	129
81	Therapeutic targeting of chemokine interactions in atherosclerosis. Nature Reviews Drug Discovery, 2010, 9, 141-153.	21.5	130
82	Platelet-Derived Chemokines in Vascular Remodeling and Atherosclerosis. Seminars in Thrombosis and Hemostasis, 2010, 36, 163-169.	1.5	46
83	Platelets and Platelet-Derived Microparticles in Vascular Inflammatory Disease. Inflammation and Allergy: Drug Targets, 2010, 9, 346-354.	1.8	40
84	A New Monocyte Chemotactic Protein-1/Chemokine CC Motif Ligand-2 Competitor Limiting Neointima Formation and Myocardial Ischemia/Reperfusion Injury in Mice. Journal of the American College of Cardiology, 2010, 56, 1847-1857.	1.2	110
85	Acetylcholine as an age-dependent non-neuronal source in the heart. Autonomic Neuroscience: Basic and Clinical, 2010, 156, 82-89.	1.4	66
86	916 PHARMACOLOGICAL ANTAGONISM OF THE CHEMOKINE CCL5 (RANTES) AMELIORATES EXPERIMENTAL LIVER FIBROSIS IN VIVO. Journal of Hepatology, 2010, 52, S355.	1.8	0
87	Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. Journal of Clinical Investigation, 2010, 120, 4129-4140.	3.9	227
88	Manipulating the chemokine system: therapeutic perspectives for atherosclerosis. Current Opinion in Investigational Drugs, 2010, 11, 265-72.	2.3	3
89	Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine, 2009, 15, 97-103.	15.2	404
90	Plateletâ€Mediated Enhancement of Leukocyte Adhesion. Microcirculation, 2009, 16, 84-96.	1.0	68

#	Article	IF	CITATIONS
91	LFA-1 Binding Destabilizes the JAM-A Homophilic Interaction During Leukocyte Transmigration. Biophysical Journal, 2009, 96, 285-293.	0.2	58
92	Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood, 2009, 113, 4799-4809.	0.6	144
93	Homocysteine upâ€regulates vascular transmembrane chemokine CXCL16 and induces CXCR6+ lymphocyte recruitment <i>in vitro</i> and <i>in vivo</i> . Journal of Cellular and Molecular Medicine, 2008, 12, 1700-1709.	1.6	19
94	The chemokine system as therapeutic target in cardiovascular disease. Drug Discovery Today Disease Mechanisms, 2008, 5, e285-e292.	0.8	2
95	Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16278-16283.	3.3	150
96	High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells. Thrombosis and Haemostasis, 2008, 100, 1155-1165.	1.8	50
97	High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells. Thrombosis and Haemostasis, 2008, 100, 1155-65.	1.8	21
98	Inflammatory Blues Turns Velvet Skin Into Rawhide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 990-992.	1.1	0
99	MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 2007, 13, 587-596.	15.2	1,065
100	Fine-tuning leukocyte responses: towards a chemokine â€~interactome'. Trends in Immunology, 2006, 27, 268-273.	2.9	77
101	Importance of Junctional Adhesion Molecule-A for Neointimal Lesion Formation and Infiltration in Atherosclerosis-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, e10-3.	1.1	63
102	Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood, 2005, 105, 924-930.	0.6	338
103	Effect of oral contraceptives on the anticoagulant activity of protein S in plasma. Thrombosis and Haemostasis, 2005, 93, 853-859.	1.8	47
104	Platelet Microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1512-1518.	1.1	351
105	The Ser460Pro mutation in recombinant protein S Heerlen does not affect its APC-cofactor and APC-independent anticoagulant activities. Thrombosis and Haemostasis, 2004, 91, 1105-1114.	1.8	15
106	The Functional Interaction of the β2 Integrin Lymphocyte Function-Associated Antigen-1 with Junctional Adhesion Molecule-A Is Mediated by the I Domain. Journal of Immunology, 2004, 173, 6259-6264.	0.4	72
107	Direct anticoagulant activity of protein S-C4b binding protein complex in Heerlen heterozygotes and normals*. Journal of Thrombosis and Haemostasis, 2004, 2, 1766-1773.	1.9	19
108	The APC-independent anticoagulant activity of protein S in plasma is decreased by elevated prothrombin levels due to the prothrombin G20210A mutation. Blood, 2003, 102, 1686-1692.	0.6	26

#	Article	IF	CITATIONS
109	Alpha-L beta-2 integrin activation on MonoMac6 cells. Protocol Exchange, 0, , .	0.3	0
110	FACS-based calcium mobilization assay. Protocol Exchange, 0, , .	0.3	0
111	Co-immunoprecipitation of Platelet Factor 4 and RANTES from human platelets. Protocol Exchange, 0, ,	0.3	1