Rory R Koenen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7160101/publications.pdf

Version: 2024-02-01

61857 53109 7,579 111 43 85 citations h-index g-index papers 116 116 116 10983 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 2007, 13, 587-596.	15.2	1,065
2	MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. Journal of Clinical Investigation, 2012, 122, 4190-4202.	3.9	436
3	Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine, 2009, 15, 97-103.	15.2	404
4	Platelet Microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1512-1518.	1.1	351
5	Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 2012, 125, 1673-1683.	1.6	347
6	Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood, 2005, 105, 924-930.	0.6	338
7	Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. Journal of Clinical Investigation, 2010, 120, 4129-4140.	3.9	227
8	Disruption of Platelet-derived Chemokine Heteromers Prevents Neutrophil Extravasation in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 628-636.	2.5	202
9	Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Scientific Reports, 2017, 7, 15297.	1.6	193
10	Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Molecular Medicine, 2013, 5, 471-481.	3.3	169
11	Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. Journal of Experimental Medicine, 2011, 208, 217-225.	4.2	168
12	Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16278-16283.	3.3	150
13	Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood, 2009, 113, 4799-4809.	0.6	144
14	Therapeutic targeting of chemokine interactions in atherosclerosis. Nature Reviews Drug Discovery, 2010, 9, 141-153.	21.5	130
15	Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO Journal, 2010, 29, 3952-3966.	3.5	129
16	Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 2017, 9, .	5.8	121
17	Double-Edged Role of the CXCL12/CXCR4 Axis in Experimental Myocardial Infarction. Journal of the American College of Cardiology, 2011, 58, 2415-2423.	1.2	114
18	Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death and Disease, 2011, 2, e211-e211.	2.7	113

#	Article	IF	Citations
19	Extracellular Vesicles as Biomarkers in Cardiovascular Disease; Chances and Risks. Frontiers in Cardiovascular Medicine, 2018, 5, 113.	1.1	112
20	A New Monocyte Chemotactic Protein-1/Chemokine CC Motif Ligand-2 Competitor Limiting Neointima Formation and Myocardial Ischemia/Reperfusion Injury in Mice. Journal of the American College of Cardiology, 2010, 56, 1847-1857.	1.2	110
21	Touch of Chemokines. Frontiers in Immunology, 2012, 3, 175.	2.2	103
22	Endothelial Junctional Adhesion Molecule-A Guides Monocytes Into Flow-Dependent Predilection Sites of Atherosclerosis. Circulation, 2014, 129, 66-76.	1.6	101
23	Chemokines as Therapeutic Targets in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 583-592.	1.1	96
24	Chemokines: established and novel targets in atherosclerosis. EMBO Molecular Medicine, 2011, 3, 713-725.	3.3	93
25	Microvesicles from platelets: novel drivers of vascular inflammation. Thrombosis and Haemostasis, 2015, 114, 228-236.	1.8	88
26	Platelets: key players in vascular inflammation. Journal of Leukocyte Biology, 2012, 92, 1167-1175.	1.5	82
27	Platelet extracellular vesicles induce a proâ€inflammatory smooth muscle cell phenotype. Journal of Extracellular Vesicles, 2017, 6, 1322454.	5.5	81
28	Fine-tuning leukocyte responses: towards a chemokine â€~interactome'. Trends in Immunology, 2006, 27, 268-273.	2.9	77
29	Contribution of Platelet CX ₃ CR1 to Platelet–Monocyte Complex Formation and Vascular Recruitment During Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1186-1193.	1.1	76
30	The Functional Interaction of the \hat{l}^2 2 Integrin Lymphocyte Function-Associated Antigen-1 with Junctional Adhesion Molecule-A Is Mediated by the I Domain. Journal of Immunology, 2004, 173, 6259-6264.	0.4	72
31	Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Frontiers in Cardiovascular Medicine, 2018, 5, 36.	1.1	69
32	Plateletâ€Mediated Enhancement of Leukocyte Adhesion. Microcirculation, 2009, 16, 84-96.	1.0	68
33	Hyperreactivity of Junctional Adhesion Molecule A-Deficient Platelets Accelerates Atherosclerosis in Hyperlipidemic Mice. Circulation Research, 2015, 116, 587-599.	2.0	67
34	Acetylcholine as an age-dependent non-neuronal source in the heart. Autonomic Neuroscience: Basic and Clinical, 2010, 156, 82-89.	1.4	66
35	Importance of Junctional Adhesion Molecule-A for Neointimal Lesion Formation and Infiltration in Atherosclerosis-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, e10-3.	1.1	63
36	Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Scientific Reports, 2018, 8, 10647.	1.6	63

#	Article	IF	Citations
37	Activation of CXCR7 Limits Atherosclerosis and Improves Hyperlipidemia by Increasing Cholesterol Uptake in Adipose Tissue. Circulation, 2014, 129, 1244-1253.	1.6	61
38	LFA-1 Binding Destabilizes the JAM-A Homophilic Interaction During Leukocyte Transmigration. Biophysical Journal, 2009, 96, 285-293.	0.2	58
39	The prowess of platelets in immunity and inflammation. Thrombosis and Haemostasis, 2016, 116, 605-612.	1.8	52
40	High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells. Thrombosis and Haemostasis, 2008, 100, 1155-1165.	1.8	50
41	Cross talk between smooth muscle cells and monocytes/activated monocytes via CX3CL1/CX3CR1 axis augments expression of pro-atherogenic molecules. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2026-2035.	1.9	48
42	Effect of oral contraceptives on the anticoagulant activity of protein S in plasma. Thrombosis and Haemostasis, 2005, 93, 853-859.	1.8	47
43	Platelet-Derived Chemokines in Vascular Remodeling and Atherosclerosis. Seminars in Thrombosis and Hemostasis, 2010, 36, 163-169.	1.5	46
44	CXCL4L1 inhibits angiogenesis and induces undirected endothelial cell migration without affecting endothelial cell proliferation and monocyte recruitment. Journal of Thrombosis and Haemostasis, 2011, 9, 209-219.	1.9	46
45	CXCR4 blockade induces atherosclerosis by affecting neutrophil function. Journal of Molecular and Cellular Cardiology, 2014, 74, 44-52.	0.9	44
46	Heterophilic chemokine receptor interactions in chemokine signaling and biology. Experimental Cell Research, 2011, 317, 655-663.	1.2	43
47	Hematopoietic Interferon Regulatory Factor 8-Deficiency Accelerates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1613-1623.	1.1	42
48	Platelets and Platelet-Derived Microparticles in Vascular Inflammatory Disease. Inflammation and Allergy: Drug Targets, 2010, 9, 346-354.	1.8	40
49	TNF- $\hat{l}\pm$ and IFN- \hat{l}^3 promote lymphocyte adhesion to endothelial junctional regions facilitating transendothelial migration. Journal of Leukocyte Biology, 2013, 95, 265-274.	1.5	37
50	Aging- and activation-induced platelet microparticles suppress apoptosis in monocytic cells and differentially signal to proinflammatory mediator release. American Journal of Blood Research, 2013, 3, 107-23.	0.6	37
51	Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome. Thrombosis and Haemostasis, 2014, 112, 1277-1287.	1.8	36
52	Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. Journal of Cellular and Molecular Medicine, 2014, 18, 790-800.	1.6	36
53	Molecular Ultrasound Imaging of Junctional Adhesion Molecule A Depicts Acute Alterations in Blood Flow and Early Endothelial Dysregulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 40-48.	1.1	34
54	Proteomic analysis reveals procoagulant properties of cigarette smoke-induced extracellular vesicles. Journal of Extracellular Vesicles, 2019, 8, 1585163.	5.5	33

#	Article	IF	Citations
55	Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium. Journal of Molecular and Cellular Cardiology, 2016, 99, 57-64.	0.9	32
56	Hck/Fgr Kinase Deficiency Reduces Plaque Growth and Stability by Blunting Monocyte Recruitment and Intraplaque Motility. Circulation, 2015, 132, 490-501.	1.6	27
57	The APC-independent anticoagulant activity of protein S in plasma is decreased by elevated prothrombin levels due to the prothrombin G20210A mutation. Blood, 2003, 102, 1686-1692.	0.6	26
58	The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis, 2021, 319, 132-141.	0.4	25
59	CCR6 selectively promotes monocyte mediated inflammation and atherogenesis in mice. Thrombosis and Haemostasis, 2013, 110, 1267-1277.	1.8	21
60	High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells. Thrombosis and Haemostasis, 2008, 100, 1155-65.	1.8	21
61	Direct anticoagulant activity of protein S-C4b binding protein complex in Heerlen heterozygotes and normals*. Journal of Thrombosis and Haemostasis, 2004, 2, 1766-1773.	1.9	19
62	Homocysteine upâ€regulates vascular transmembrane chemokine CXCL16 and induces CXCR6+ lymphocyte recruitment <i>in vitro</i> and <i>in vivo</i> Journal of Cellular and Molecular Medicine, 2008, 12, 1700-1709.	1.6	19
63	Atherogenic mononuclear cell recruitment is facilitated by oxidized lipoprotein-induced endothelial junctional adhesion molecule-A redistribution. Atherosclerosis, 2014, 234, 254-264.	0.4	19
64	Anti-Inflammatory Therapeutic Approaches to Reduce Acute Atherosclerotic Complications. Current Pharmaceutical Biotechnology, 2012, 13, 37-45.	0.9	18
65	Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. Journal of Biological Chemistry, 2019, 294, 12370-12379.	1.6	17
66	Chemoselective Oxime Reactions in Proteins and Peptides by Using an Optimized Oxime Strategy: The Demise of Levulinic Acid. ChemBioChem, 2013, 14, 2431-2434.	1.3	16
67	Probing Functional Heteromeric Chemokine Protein–Protein Interactions through Conformationâ€Assisted Oxime Ligation. Angewandte Chemie - International Edition, 2016, 55, 14963-14966.	7.2	16
68	Deletion of junctional adhesion molecule A from platelets increases earlyâ€stage neointima formation after wire injury in hyperlipidemic mice. Journal of Cellular and Molecular Medicine, 2017, 21, 1523-1531.	1.6	16
69	The Ser460Pro mutation in recombinant protein S Heerlen does not affect its APC-cofactor and APC-independent anticoagulant activities. Thrombosis and Haemostasis, 2004, 91, 1105-1114.	1.8	15
70	Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice. PLoS ONE, 2014, 9, e87452.	1.1	14
71	Complementary roles of platelet \hat{l} ±llb \hat{l} 23 integrin, phosphatidylserine exposure and cytoskeletal rearrangement in the release of extracellular vesicles. Atherosclerosis, 2020, 310, 17-25.	0.4	12
72	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS ONE, 2021, 16, e0244736.	1.1	12

#	Article	IF	CITATIONS
73	Incorporation of Disulfide Containing Protein Modules into Multivalent Antigenic Conjugates: Generation of Antibodies against the Thrombin-Sensitive Region of Murine Protein S. Journal of the American Chemical Society, 2012, 134, 19318-19321.	6.6	11
74	Structural characterization of anti-CCL5 activity of the tick salivary protein evasin-4. Journal of Biological Chemistry, 2020, 295, 14367-14378.	1.6	11
75	Exchange of extracellular domains of CCR1 and CCR5 reveals confined functions in CCL5-mediated cell recruitment. Thrombosis and Haemostasis, 2013, 110, 795-806.	1.8	10
76	Platelets and coagulation factors: Established and novel roles in atherosclerosis and atherothrombosis. Atherosclerosis, 2020, 307, 78-79.	0.4	8
77	Editorial: Extracellular Vesicle-Mediated Processes in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2018, 5, 133.	1.1	6
78	Tick Saliva Protein Evasin-3 Allows for Visualization of Inflammation in Arteries through Interactions with CXC-Type Chemokines Deposited on Activated Endothelium. Bioconjugate Chemistry, 2020, 31, 948-955.	1.8	6
79	Inhibition of Phosphodiesterase 3A by Cilostazol Dampens Proinflammatory Platelet Functions. Cells, 2021, 10, 1998.	1.8	6
80	Differential Effects of Platelet Factor 4 (CXCL4) and Its Non-Allelic Variant (CXCL4L1) on Cultured Human Vascular Smooth Muscle Cells. International Journal of Molecular Sciences, 2022, 23, 580.	1.8	6
81	Characterization of cerebral small vessel disease by neutrophil and platelet activation markers using artificial intelligence. Journal of Neuroimmunology, 2022, 367, 577863.	1.1	6
82	Lysophosphatidylcholine in Platelet Microvesicles: The Grease for Cardiovascular Disease. Thrombosis and Haemostasis, 2019, 119, 1202-1204.	1.8	5
83	Combined Antiplatelet Therapy Reduces the Proinflammatory Properties of Activated Platelets. TH Open, 2021, 05, e533-e542.	0.7	5
84	<scp>JAMâ€A</scp> is a multifaceted regulator in hepatic fibrogenesis, supporting <scp>LSEC</scp> integrity and stellate cell quiescence. Liver International, 2022, 42, 1185-1203.	1.9	5
85	Chemokines modulate glycan binding and the immunoregulatory activity of galectins. Communications Biology, 2021, 4, 1415.	2.0	5
86	Vaping, vapor, vesicles! Electronic cigarettes provoke vascular extracellular vesicle release in healthy volunteers. Atherosclerosis, 2020, 301, 79-81.	0.4	3
87	Manipulating the chemokine system: therapeutic perspectives for atherosclerosis. Current Opinion in Investigational Drugs, 2010, 11, 265-72.	2.3	3
88	Extracellular Vesicles from Steatotic Hepatocytes Provoke Pro-Fibrotic Responses in Cultured Stellate Cells. Biomolecules, 2022, 12, 698.	1.8	3
89	The chemokine system as therapeutic target in cardiovascular disease. Drug Discovery Today Disease Mechanisms, 2008, 5, e285-e292.	0.8	2
90	Laminar Flow-based Assays to Investigate Leukocyte Recruitment on Cultured Vascular Cells and Adherent Platelets. Journal of Visualized Experiments, 2018, , .	0.2	2

#	Article	IF	Citations
91	Rapid Internalization and Nuclear Translocation of CCL5 and CXCL4 in Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 7332.	1.8	2
92	Neutrophil Extracellular Traps as Therapeutic Targets for Inflammatory Disease. American Journal of Pharmacology and Toxicology, 2014, 9, 200-202.	0.7	1
93	Probing Functional Heteromeric Chemokine Protein–Protein Interactions through Conformationâ€Assisted Oxime Ligation. Angewandte Chemie, 2016, 128, 15187-15190.	1.6	1
94	No hearty reception: infusion of CXCL4 impedes tissue repair by macrophages after myocardial infarction. Cardiovascular Research, 2019, 115, 264-265.	1.8	1
95	Co-immunoprecipitation of Platelet Factor 4 and RANTES from human platelets. Protocol Exchange, 0, ,	0.3	1
96	Characterisation of Citrullinated TFPI and Truncated TFPI Constructs By PAD4 in Model and Plasma Systems. Blood, 2019, 134, 2390-2390.	0.6	1
97	Molecular Detection of Venous Thrombosis in Mouse Models Using SPECT/CT. Biomolecules, 2022, 12, 829.	1.8	1
98	Inflammatory Blues Turns Velvet Skin Into Rawhide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 990-992.	1.1	0
99	916 PHARMACOLOGICAL ANTAGONISM OF THE CHEMOKINE CCL5 (RANTES) AMELIORATES EXPERIMENTAL LIVER FIBROSIS IN VIVO. Journal of Hepatology, 2010, 52, S355.	1.8	0
100	Chemokines and Their Receptors as Therapeutic Targets in Atherosclerosis. , 2012, , 1-30.		0
101	CX3CL1, a special deputy at the intersection of platelets and the vessel wall. Thrombosis and Haemostasis, 2014, 111, 567-567.	1.8	O
102	Platelets: Old Players Revisited284Platelet microvesicles in vascular inflammation285Pharmacological depletion of serotonin promotes atherosclerotic plaque formation in apoE-/- mice286Deletion of junctional adhesion molecule a from platelets increases early stage neointage formation after wire injury in hyperlipidemic mice. Cardiovascular Research, 2016, 111,	1.8	0
103	S55-S55. Alpha-L beta-2 integrin activation on MonoMac6 cells. Protocol Exchange, 0, , .	0.3	0
104	FACS-based calcium mobilization assay. Protocol Exchange, 0, , .	0.3	0
105	Thrombin Inhibition Prevents Against Severe Atherosclerosis Progression in Prothrombotic Mice. Blood, 2012, 120, 103-103.	0.6	0
106	Conformation-Crooking CXCL4 to Unravel Autoimmune Heparin-Induced Thrombocytopenia. Thrombosis and Haemostasis, 2021, 121, 258-260.	1.8	0
107	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro., 2021, 16, e0244736.		0
108	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro., 2021, 16, e0244736.		0

#	Article	IF	CITATIONS
109	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		O
110	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro., 2021, 16, e0244736.		0
111	Jam-A Unleashed Incites Thromboinflammatory Coronary Artery Disease. JACC Basic To Translational Science, 2022, 7, 462-464.	1.9	O