Yan Yu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/715980/yan-yu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

405	29,375	95	157
papers	citations	h-index	g-index
440 ext. papers	34,893 ext. citations	12.8 avg, IF	7.96 L-index

#	Paper	IF	Citations
405	In Situ Secondary Phase Modified Low-Strain Na3Ti(PO3)3N Cathode Achieving Fast Kinetics and Ultralong Cycle Life. <i>ACS Energy Letters</i> , 2022 , 7, 632-639	20.1	2
404	Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/K Metal Batteries <i>Advanced Materials</i> , 2022 , e2109439	24	11
403	Rapid internal conversion harvested in Co/Mo dichalcogenides hollow nanocages of polysulfides for stable Lithium-Sulfur batteries. <i>Chemical Engineering Journal</i> , 2022 , 434, 134498	14.7	4
402	A High-Efficiency Mo C Electrocatalyst Promoting the Polysulfide Redox Kinetics for Na-S Batteries <i>Advanced Materials</i> , 2022 , e2200479	24	12
401	Anisotropic presentation of ligands on cargos modulates degradative function of phagosomes <i>Biophysical Reports</i> , 2022 , 2, 100041-100041		
400	Fluorine-induced dual defects in nip2 anode with robust sodium storage performance. <i>Nano Research</i> , 2022 , 15, 2147	10	4
399	Structure Engineering of Vanadium Tetrasulfides for High-Capacity and High-Rate Sodium Storage <i>Small</i> , 2022 , e2107058	11	3
398	Energy Spotlight. ACS Energy Letters, 2022, 7, 1125-1127	20.1	
397	Advances in the Development of Single-Atom Catalysts for High-Energy-Density Lithium-Sulfur Batteries <i>Advanced Materials</i> , 2022 , e2200102	24	13
396	Open-Ended Ni S -Co S Heterostructures Nanocage Anode with Enhanced Reaction Kinetics for Superior Potassium Ion Batteries <i>Advanced Materials</i> , 2022 , e2201420	24	4
395	Tin-Based Anode Materials for Stable Sodium Storage: Progress and Perspective. <i>Advanced Materials</i> , 2021 , e2106895	24	9
394	Real-Time Simultaneous Imaging of Acidification and Proteolysis in Single Phagosomes Using Bifunctional Janus-Particle Probes. <i>Angewandte Chemie</i> , 2021 , 133, 26938	3.6	
393	Real-Time Simultaneous Imaging of Acidification and Proteolysis in Single Phagosomes Using Bifunctional Janus-Particle Probes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26734-26739	16.4	2
392	The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. <i>ACS Nano</i> , 2021 , 15, 47-80	16.7	39
391	Metal-Organic Framework-Derived Nanoconfinements of CoF and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery. <i>ACS Nano</i> , 2021 , 15, 1509-1518	16.7	22
390	A Self-Healing Volume Variation Three-Dimensional Continuous Bulk Porous Bismuth for Ultrafast Sodium Storage. <i>Advanced Functional Materials</i> , 2021 , 31, 2011264	15.6	14
389	Recent Progress on Modification Strategies of Alloy-based Anode Materials for Alkali-ion Batteries. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 200-209	2.2	3

(2021-2021)

388	Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries. <i>Small</i> , 2021 , 17, e2005248	11	12
387	Two-Dimensional Boron and Nitrogen Dual-Doped Graphitic Carbon as an Efficient Metal-Free Cathodic Electrocatalyst for Lithium-Air Batteries. <i>ChemElectroChem</i> , 2021 , 8, 949-956	4.3	1
386	NASICON Electrodes: A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability (Adv. Funct. Mater. 11/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170070	15.6	
385	Fast and Reversible Na Intercalation in Nsutite-Type VO2 Hierarchitectures. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100191	4.6	2
384	High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of 40 mC. <i>Nano Energy</i> , 2021 , 82, 105688	17.1	12
383	Ultrafast Potassium Storage in F-Induced Ultra-High Edge-Defective Carbon Nanosheets. <i>ACS Nano</i> , 2021 , 15, 10217-10227	16.7	27
382	Spatial organization of Fc R and TLR2/1 on phagosome membranes differentially regulates their synergistic and inhibitory receptor crosstalk. <i>Scientific Reports</i> , 2021 , 11, 13430	4.9	O
381	Efficient Stress Dissipation in Well-Aligned Pyramidal SbSn Alloy Nanoarrays for Robust Sodium Storage. <i>Advanced Functional Materials</i> , 2021 , 31, 2104798	15.6	8
380	Mesoporous carbon nanosheet-assembled flowers towards superior potassium storage. <i>Chinese Chemical Letters</i> , 2021 , 32, 1161-1164	8.1	11
379	Gallium-based anodes for alkali metal ion batteries. <i>Journal of Energy Chemistry</i> , 2021 , 55, 557-571	12	6
378	Carbon-based materials for all-solid-state zinclir batteries 2021 , 3, 50-65		19
377	Vanadate-based electrodes for rechargeable batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1585-160	9 7.8	5
376	Photopolymerized Gel Electrolyte with Unprecedented Room-Temperature Ionic Conductivity for High-Energy-Density Solid-State Sodium Metal Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2002930	21.8	21
375	Sub-nanometric Manganous Oxide Clusters in Nitrogen Doped Mesoporous Carbon Nanosheets for High-Performance Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2021 , 21, 700-708	11.5	26
374	A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability. <i>Advanced Functional Materials</i> , 2021 , 31, 2009458	15.6	32
373	Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive. <i>Rare Metals</i> , 2021 , 40, 433-439	5.5	12
372	Superior potassium and zinc storage in K-doped VO2(B) spheres. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3132-3138	7.8	3
371	Energy Spotlight. ACS Energy Letters, 2021 , 6, 710-712	20.1	

370	Frontiers for Room-Temperature SodiumBulfur Batteries. ACS Energy Letters, 2021, 6, 529-536	20.1	32
369	Binding Se into nitrogen-doped porous carbon nanosheets for high-performance potassium storage. <i>Informali</i> Materily, 2021 , 3, 421-431	23.1	26
368	Innate immune receptor clustering and its role in immune regulation. <i>Journal of Cell Science</i> , 2021 , 134,	5.3	3
367	Liquid-Phase Peak Force Infrared Microscopy for Chemical Nanoimaging and Spectroscopy. <i>Analytical Chemistry</i> , 2021 , 93, 3567-3575	7.8	2
366	Advances in metal phosphides for sodium-ion batteries. SusMat, 2021, 1, 359-392		28
365	Incorporating Cobalt Nanoparticles in Nitrogen-Doped Mesoporous Carbon Spheres through Composite Micelle Assembly for High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 38604-38612	9.5	7
364	Biomimetic N-doped sea-urchin-structured porous carbon for the anode material of high-energy-density potassium-ion batteries. <i>Electrochimica Acta</i> , 2021 , 388, 138565	6.7	5
363	Individual development plans - experiences made in graduate student training. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 5681-5684	4.4	
362	Research Progress on Copper-Based Current Collector for Lithium Metal Batteries. <i>Energy & Energy & En</i>	4.1	6
361	Boosting potassium storage performance via construction of NbSe2Based misfit layered chalcogenides. <i>Energy Storage Materials</i> , 2021 , 39, 265-270	19.4	10
360	Manipulating the Electronic Structure of Nickel Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na-S Batteries. <i>ACS Nano</i> , 2021 , 15, 15218-15228	16.7	16
359	Mo N-W N Heterostructures Embedded in Spherical Carbon Superstructure as Highly Efficient Polysulfide Electrocatalysts for Stable Room-Temperature Na-S Batteries. <i>Advanced Materials</i> , 2021 , 33, e2103846	24	17
358	3D Tungsten Disulfide/Carbon Nanotube Networks as Separator Coatings and Cathode Additives for Stable and Fast Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discourse (Coating Stable Additive Stable Ad</i>	5 3 7	2
357	Design Principles of Sodium/Potassium Protection Layer for High-Power High-Energy Sodium/Potassium-Metal Batteries in Carbonate Electrolytes: a Case Study of Na Te/K Te. <i>Advanced Materials</i> , 2021 , 33, e2106353	24	20
356	Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2 Cathode with SnO2 Modification. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 1130	2.2	
355	Quantitative Coassembly for Precise Synthesis of Mesoporous Nanospheres with Pore Structure-Dependent Catalytic Performance. <i>Advanced Materials</i> , 2021 , 33, e2103130	24	1
354	Integration of Homogeneous and Heterogeneous Nucleation Growth via 3D Alloy Framework for Stable Na/K Metal Anode. <i>EScience</i> , 2021 , 1, 75-75		16
353	Status and Challenges of Cathode Materials for Room-Temperature SodiumBulfur Batteries. <i>Small Science</i> , 2021 , 1, 2100059		7

(2020-2021)

352	Harnessing the Volume Expansion of MoS Anode by Structure Engineering to Achieve High Performance Beyond Lithium-Based Rechargeable Batteries. <i>Advanced Materials</i> , 2021 , 33, e2106232	24	16	
351	Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. <i>Nature Communications</i> , 2021 , 12, 5786	17.4	9	
350	An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. <i>Energy Storage Materials</i> , 2021 , 42, 145-153	19.4	13	
349	Synergetic enhancement of sodium storage in gallium-based heterostructures. <i>Nano Energy</i> , 2021 , 89, 106395	17.1	6	
348	Red Phosphorous-Derived Protective Layers with High Ionic Conductivity and Mechanical Strength on Dendrite-Free Sodium and Potassium Metal Anodes. <i>Advanced Energy Materials</i> , 2021 , 11, 2003381	21.8	37	
347	An Efficient Strategy toward Multichambered Carbon Nanoboxes with Multiple Spatial Confinement for Advanced Sodium-Sulfur Batteries <i>ACS Nano</i> , 2021 , 15, 20607-20618	16.7	5	
346	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. <i>Small Structures</i> , 2020 , 1, 2070003	8.7		
345	Macrophage activation on "phagocytic synapse" arrays: Spacing of nanoclustered ligands directs TLR1/2 signaling with an intrinsic limit. <i>Science Advances</i> , 2020 , 6,	14.3	6	
344	Simultaneous Nanoscale Imaging of Chemical and Architectural Heterogeneity on Yeast Cell Wall Particles. <i>Langmuir</i> , 2020 , 36, 6169-6177	4	10	
343	Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. <i>Science China Materials</i> , 2020 , 63, 2089-2118	7.1	81	
342	Advances in K-Q (Q = S, Se and Se S) batteries. <i>Materials Today</i> , 2020 , 39, 9-22	21.8	13	
341	Boosting High-Performance in Lithium-Sulfur Batteries via Dilute Electrolyte. <i>Nano Letters</i> , 2020 , 20, 5391-5399	11.5	49	
340	3D Flexible, Conductive, and Recyclable TiCT MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. <i>ACS Nano</i> , 2020 , 14, 8678-8688	16.7	92	
339	The Synergetic Effect of Lithium Bisoxalatodifluorophosphate and Fluoroethylene Carbonate on Dendrite Suppression for Fast Charging Lithium Metal Batteries. <i>Small</i> , 2020 , 16, e2001989	11	15	
338	Lithium Difluorophosphate-Based Dual-Salt Low Concentration Electrolytes for Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2001440	21.8	53	
337	A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery. <i>Nano-Micro Letters</i> , 2020 , 12, 67	19.5	48	
336	Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition. <i>Nano Letters</i> , 2020 , 20, 2724-2732	11.5	54	
335	Development and challenge of advanced nonaqueous sodium ion batteries. <i>EnergyChem</i> , 2020 , 2, 1000	3 1 6.9	18	

334	Sodium Ion Batteries: Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility (Adv. Energy Mater. 12/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070055	21.8	0
333	Hybrid Cathodes Composed of K3V2(PO4)3 and Carbon Materials with Boosted Charge Transfer for K-Ion Batteries. <i>Surfaces</i> , 2020 , 3, 1-10	2.9	4
332	Regulating Lithium Nucleation and Deposition via MOF-Derived Co@C-Modified Carbon Cloth for Stable Li Metal Anode. <i>Advanced Functional Materials</i> , 2020 , 30, 1909159	15.6	87
331	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. <i>Chemical Society Reviews</i> , 2020 , 49, 1569-1614	58.5	615
330	Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. <i>Energy and Environmental Science</i> , 2020 , 13, 821-829	35.4	47
329	A High-Temperature Na-Ion Battery: Boosting the Rate Capability and Cycle Life by Structure Engineering. <i>Small</i> , 2020 , 16, e1906669	11	21
328	Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. <i>Advanced Energy Materials</i> , 2020 , 10, 1903698	21.8	67
327	Advantageous Functional Integration of Adsorption-Intercalation-Conversion Hybrid Mechanisms in 3D Flexible Nb2O5@Hard Carbon@MoS2@Soft Carbon Fiber Paper Anodes for Ultrafast and Super-Stable Sodium Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1908665	15.6	43
326	Sodium/Potassium-Ion Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering. <i>Advanced Materials</i> , 2020 , 32, e1904320	24	191
325	Constructing Co O Nanowires on Carbon Fiber Film as a Lithiophilic Host for Stable Lithium Metal Anodes. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 1057-1066	4.5	6
324	Boosting Potassium Storage Performance of the CuS Anode Morphology Engineering and Electrolyte Chemistry. <i>ACS Nano</i> , 2020 , 14, 6024-6033	16.7	79
323	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogen-Doped Carbon: Superior Potassium-Ion Storage and Insight into Potassium Storage Mechanism. <i>Advanced Materials</i> , 2020 , 32, e2000958	24	113
322	Metal Chalcogenides: Metal Chalcogenides: Paving the Way for High-Performance Sodium/Potassium-Ion Batteries (Small Methods 1/2020). <i>Small Methods</i> , 2020 , 4, 2070002	12.8	1
321	Constructing a 3D interconnected Fe@graphitic carbon structure for a highly efficient microwave absorber. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1326-1334	7.1	13
320	Optimizing the Void Size of Yolk-Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries. <i>Nano Letters</i> , 2020 , 20, 758-767	11.5	78
319	Topotactic Transformation Synthesis of 2D Ultrathin GeS Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries. <i>ACS Nano</i> , 2020 , 14, 531-540	16.7	41
318	A Dual-Functional Conductive Framework Embedded with TiN-VN Heterostructures for Highly Efficient Polysulfide and Lithium Regulation toward Stable Li-S Full Batteries. <i>Advanced Materials</i> , 2020 , 32, e1905658	24	154
317	Transition metal chalcogenide anodes for sodium storage. <i>Materials Today</i> , 2020 , 35, 131-167	21.8	85

(2020-2020)

316	Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles. <i>Nanoscale</i> , 2020 , 12, 20326-20336	7.7	4
315	g-C3N4 Derivative Artificial Organic/Inorganic Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anode. <i>Advanced Energy Materials</i> , 2020 , 10, 2002647	21.8	61
314	Self-Formed Electronic/Ionic Conductive Fe S @ S @ 0.9Na SbS ?0.1NaI Composite for High-Performance Room-Temperature All-Solid-State Sodium-Sulfur Battery. <i>Small</i> , 2020 , 16, e2001574	11	23
313	Unraveling the Nature of Excellent Potassium Storage in Small-Molecule Se@Peapod-Like N-Doped Carbon Nanofibers. <i>Advanced Materials</i> , 2020 , 32, e2003879	24	47
312	Boosting Potassium Storage by Integration Advantageous of Defect Engineering and Spatial Confinement: A Case Study of Sb Se. <i>Small</i> , 2020 , 16, e2005272	11	20
311	Sodium-Ion Batteries: Ostwald Ripening Tailoring Hierarchically Porous Na3V2(PO4)2O2F Hollow Nanospheres for Superior High-Rate and Ultrastable Sodium Ion Storage (Small 48/2020). <i>Small</i> , 2020 , 16, 2070263	11	1
310	Chebyshev polynomial method to Landauer BE tiker formula of quantum transport in nanostructures. <i>AIP Advances</i> , 2020 , 10, 075215	1.5	O
309	Vanadium-Based Materials: Next Generation Electrodes Powering the Battery Revolution?. <i>Accounts of Chemical Research</i> , 2020 , 53, 1660-1671	24.3	50
308	Phase Engineering of Iron-Cobalt Sulfides for Zn-Air and Na-Ion Batteries. ACS Nano, 2020, 14, 10438-10	45 .7	20
307	Enhanced Pseudo-Capacitive Contributions to High-Performance Sodium Storage in TiO/C Nanofibers via Double Effects of Sulfur Modification. <i>Nano-Micro Letters</i> , 2020 , 12, 165	19.5	15
306	Ostwald Ripening Tailoring Hierarchically Porous Na V (PO) O F Hollow Nanospheres for Superior High-Rate and Ultrastable Sodium Ion Storage. <i>Small</i> , 2020 , 16, e2004925	11	14
305	Hierarchical Microtubes Constructed by MoS Nanosheets with Enhanced Sodium Storage Performance. <i>ACS Nano</i> , 2020 , 14, 15577-15586	16.7	37
304	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. <i>Small Structures</i> , 2020 , 1, 2000053	8.7	31
303	Integrating Conductivity, Captivity, and Immobility Ability into N/O Dual-Doped Porous Carbon Nanocage Anchored with CNT as an Effective Se Host for Advanced K-Se Battery. <i>Advanced Functional Materials</i> , 2020 , 30, 2003871	15.6	21
302	Progress and Prospects of Transition Metal Sulfides for Sodium Storage. <i>Advanced Fiber Materials</i> , 2020 , 2, 314-337	10.9	36
301	VOPO4?2H2O Nanosheet Cathode for Enhanced Sodium Storage. <i>Frontiers in Energy Research</i> , 2020 , 8,	3.8	5
300	3D porous V2O5 architectures for high-rate lithium storage. <i>Journal of Energy Chemistry</i> , 2020 , 40, 15-21	12	27
299	Metal Chalcogenides: Paving the Way for High-Performance Sodium/Potassium-Ion Batteries. <i>Small Methods</i> , 2020 , 4, 1900563	12.8	97

298	Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms. <i>Nano Energy</i> , 2020 , 73, 104807	17.1	31
297	A Mixed Lithium-Ion Conductive Li2S/Li2Se Protection Layer for Stable Lithium Metal Anode. <i>Advanced Functional Materials</i> , 2020 , 30, 2001607	15.6	83
296	3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery. <i>Advanced Materials</i> , 2019 , 31, e1905146	24	43
295	RuO Particles Anchored on Brush-Like 3D Carbon Cloth Guide Homogenous Li/Na Nucleation Framework for Stable Li/Na Anode. <i>Small</i> , 2019 , 15, e1903725	11	21
294	The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1901414	24	105
293	A new high-capacity and safe energy storage system: lithium-ion sulfur batteries. <i>Nanoscale</i> , 2019 , 11, 19140-19157	7.7	15
292	Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. <i>Nature Communications</i> , 2019 , 10, 4244	17.4	128
291	Advanced cathodes for potassium-ion battery. Current Opinion in Electrochemistry, 2019, 18, 24-30	7.2	28
290	Tracking Single Molecules in Biomembranes: Is Seeing Always Believing?. ACS Nano, 2019, 13, 10860-10)8 6% 7	8
289	Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4913-4921	13	121
288	Boosting Potassium-Ion Battery Performance by Encapsulating Red Phosphorus in Free-Standing Nitrogen-Doped Porous Hollow Carbon Nanofibers. <i>Nano Letters</i> , 2019 , 19, 1351-1358	11.5	186
287	NaV(PO): an advanced cathode for sodium-ion batteries. <i>Nanoscale</i> , 2019 , 11, 2556-2576	7.7	130
286	Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery. <i>Informali</i> Materilly, 2019 , 1, 251	23.1	87
285	Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2019 , 31, e1902228	24	149
284	Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. Journal of Materials Chemistry A, 2019 , 7, 15774-15781	13	57
283	Boosting Sodium Storage in TiF3/Carbon Core/Sheath Nanofibers through an Efficient Mixed-Conducting Network. <i>Advanced Energy Materials</i> , 2019 , 9, 1901470	21.8	13
282	Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 395-427	29.3	69
281	Natural Vermiculite Enables High-Performance in LithiumBulfur Batteries via Electrical Double Layer Effects. <i>Advanced Functional Materials</i> , 2019 , 29, 1902820	15.6	27

280	Transformation of Polyoxometalate into 3D Porous Li-Containing Oxide: A Case Study of LiV2O5 for High-Performance Cathodes of Li-Ion Batteries. <i>Small Methods</i> , 2019 , 3, 1900187	12.8	12
279	Morphology-controlled Fabrication of SnO /ZnO Nanocomposites with Enhanced Photocatalytic Performance. <i>Photochemistry and Photobiology</i> , 2019 , 95, 1131-1141	3.6	7
278	Persistent zinc-ion storage in mass-produced V2O5 architectures. <i>Nano Energy</i> , 2019 , 60, 171-178	17.1	98
277	Self-Supporting Hybrid Fiber Mats of CuP-CoP/N-C Endowed with Enhanced Lithium/Sodium Ions Storage Performances. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 11442-11450	9.5	32
276	Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8581-8588	13	19
275	Well-Defined Cu O/Cu (BTC) Sponge Architecture as Efficient Phenolics Scavenger: Synchronous Etching and Reduction of MOFs in confined-pH NH?H O. <i>Small</i> , 2019 , 15, e1805478	11	10
274	A Double-Buffering Strategy to Boost the Lithium Storage of Botryoid MnO /C Anodes. <i>Small</i> , 2019 , 15, e1900015	11	24
273	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodium-Storage Performance. <i>Angewandte Chemie</i> , 2019 , 131, 7316-7321	3.6	8
272	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodium-Storage Performance. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7238-7243	16.4	57
271	Octahedral Cu2O@Co(OH)2 Nanocages with Hierarchical Flake-Like Walls and Yolk-Shell Structures for Enhanced Electrocatalytic Activity. <i>ChemCatChem</i> , 2019 , 11, 2520-2525	5.2	11
270	Encapsulation of SeS into Nitrogen-Doped Free-Standing Carbon Nanofiber Film Enabling Long Cycle Life and High Energy Density K-SeS Battery. <i>ACS Nano</i> , 2019 , 13, 4695-4704	16.7	66
269	Safety of Sodium-Ion Batteries: High-Safety Nonaqueous Electrolytes and Interphases for Sodium-Ion Batteries (Small 14/2019). <i>Small</i> , 2019 , 15, 1970072	11	11
268	Toward High Power-High Energy Sodium Cathodes: A Case Study of Bicontinuous Ordered Network of 3D Porous Na (VO) (PO) F/rGO with Pseudocapacitance Effect. <i>Small</i> , 2019 , 15, e1900356	11	34
267	Niobium-Based Oxides Toward Advanced Electrochemical Energy Storage: Recent Advances and Challenges. <i>Small</i> , 2019 , 15, e1804884	11	86
266	Peering into Alloy Anodes for Sodium-Ion Batteries: Current Trends, Challenges, and Opportunities. <i>Advanced Functional Materials</i> , 2019 , 29, 1808745	15.6	133
265	MulticoreBhell Bi@N-doped Carbon Nanospheres for High Power Density and Long Cycle Life Sodium- and Potassium-Ion Anodes. <i>Advanced Functional Materials</i> , 2019 , 29, 1809195	15.6	183
264	High-Safety Nonaqueous Electrolytes and Interphases for Sodium-Ion Batteries. <i>Small</i> , 2019 , 15, e18054	79	33
263	Binding Nanosized Cobalt Chalcogenides in B,N-Codoped Graphene for Enhanced Sodium Storage. Small Methods, 2019 , 3, 1800170	12.8	34

262	2D material as anode for sodium ion batteries: Recent progress and perspectives. <i>Energy Storage Materials</i> , 2019 , 16, 323-343	19.4	148
261	LithiumBulfur Batteries: Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density LithiumBulfur Batteries (Adv. Mater. 33/2019). <i>Advanced Materials</i> , 2019 , 31, 1970236	24	8
260	Three-Dimensional Ordered Macroporous Metal-Organic Framework Single Crystal-Derived Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. <i>Nano Letters</i> , 2019 , 19, 4965-4973	11.5	152
259	A Novel Protective Strategy on High-Voltage LiCoO2 Cathode for Fast Charging Applications: Li1.6Mg1.6Sn2.8O8 Double Layer Structure via SnO2 Surface Modification. <i>Small Methods</i> , 2019 , 3, 1900	1355 355	11
258	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2019 , 13, 8986-8996	16.7	129
257	Manipulation of 2D carbon nanoplates with a corellhell structure for high-performance potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19929-19938	13	29
256	Metal Fluoride[lithium Batteries: 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride[lithium Battery (Adv. Mater. 43/2019). <i>Advanced Materials</i> , 2019 , 31, 1970304	24	1
255	Lipid bilayer disruption induced by amphiphilic Janus nanoparticles: the non-monotonic effect of charged lipids. <i>Soft Matter</i> , 2019 , 15, 2373-2380	3.6	10
254	A multi-layered Ti3C2/Li2S composite as cathode material for advanced lithium-sulfur batteries. Journal of Energy Chemistry, 2019 , 39, 176-181	12	30
253	Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 25106-25114	11.5	12
252	Potassium-Ion Batteries: The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries (Adv. Mater. 50/2019). <i>Advanced Materials</i> , 2019 , 31, 1970354	24	1
251	Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. <i>Nano Research</i> , 2019 , 12, 2211-2217	10	21
250	Regulating Lithium Nucleation via CNTs Modifying Carbon Cloth Film for Stable Li Metal Anode. <i>Small</i> , 2019 , 15, e1803734	11	67
249	Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. <i>Nano Energy</i> , 2019 , 58, 355-364	17.1	105
248	A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic Efficiency: Free-standing porous carbon nanofiber film derived from bacterial cellulose. <i>Energy Storage Materials</i> , 2019 , 22, 105-112	19.4	52
247	Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. <i>Nano Energy</i> , 2019 , 55, 93-114	17.1	285
246	Designed Nanoarchitectures by Electrostatic Spray Deposition for Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1803408	24	29
245	Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries. <i>Energy Storage Materials</i> , 2019 , 18, 165-173	19.4	98

(2018-2018)

244	Binding Sulfur-Doped Nb2O5 Hollow Nanospheres on Sulfur-Doped Graphene Networks for Highly Reversible Sodium Storage. <i>Advanced Functional Materials</i> , 2018 , 28, 1800394	15.6	79	
243	An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. <i>Nano Energy</i> , 2018 , 48, 448-455	17.1	75	
242	Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles. ACS Nano, 2018, 12, 3646-3	657 6.7	33	
241	The State and Challenges of Anode Materials Based on Conversion Reactions for Sodium Storage. <i>Small</i> , 2018 , 14, e1703671	11	83	
240	Chiral zero energy modes in two-dimensional disordered Dirac semimetals. <i>Physical Review B</i> , 2018 , 97,	3.3	2	
239	Solid-State Sodium Batteries. Advanced Energy Materials, 2018, 8, 1703012	21.8	275	
238	Amorphous Red Phosphorus Embedded in Sandwiched Porous Carbon Enabling Superior Sodium Storage Performances. <i>Small</i> , 2018 , 14, e1703472	11	46	
237	Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage. <i>Advanced Functional Materials</i> , 2018 , 28, 1707179	15.6	48	
236	Facile synthesis of porous germanium-iron bimetal oxide nanowires as anode materials for lithium-ion batteries. <i>Nano Research</i> , 2018 , 11, 3702-3709	10	21	
235	Stress-Relieved Nanowires by Silicon Substitution for High-Capacity and Stable Lithium Storage. <i>Advanced Energy Materials</i> , 2018 , 8, 1702805	21.8	23	
234	Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 1248-1265	4.5	28	
233	A Sulfur-Limonene-Based Electrode for Lithium-Sulfur Batteries: High-Performance by Self-Protection. <i>Advanced Materials</i> , 2018 , 30, e1706643	24	85	
232	Calcium ion-assisted lipid tubule formation. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 603-608	7.8	6	
231	A Freestanding and Long-Life Sodium-Selenium Cathode by Encapsulation of Selenium into Microporous Multichannel Carbon Nanofibers. <i>Small</i> , 2018 , 14, 1703252	11	59	
230	Expanding pore sizes of ZIF-8-derived nitrogen-doped microporous carbon via C embedding: toward improved anode performance for the lithium-ion battery. <i>Nanoscale</i> , 2018 , 10, 2473-2480	7.7	31	
229	Design Nitrogen (N) and Sulfur (S) Co-Doped 3D Graphene Network Architectures for High-Performance Sodium Storage. <i>Small</i> , 2018 , 14, 1703471	11	57	
228	MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. <i>Nano Research</i> , 2018 , 11, 3844-3853	10	50	
227	Multi-electron reaction materials for sodium-based batteries. <i>Materials Today</i> , 2018 , 21, 960-973	21.8	77	

226	Highly Reversible Na Storage in Na3V2(PO4)3 by Optimizing Nanostructure and Rational Surface Engineering. <i>Advanced Energy Materials</i> , 2018 , 8, 1800068	21.8	129
225	A spray-freezing approach to reduced graphene oxide/MoS2 hybrids for superior energy storage. <i>Energy Storage Materials</i> , 2018 , 10, 282-290	19.4	41
224	Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances >90% and sheet resistances . <i>Journal of Colloid and Interface Science</i> , 2018 , 512, 208-218	9.3	36
223	Single-Janus Rod Tracking Reveals the "Rock-and-Roll" of Endosomes in Living Cells. <i>Langmuir</i> , 2018 , 34, 1151-1158	4	6
222	Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing. <i>Nano Research</i> , 2018 , 11, 2256-2264	10	21
221	Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. <i>Energy Storage Materials</i> , 2018 , 10, 122-129	19.4	36
220	A Flexible Sulfur-Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage. <i>Small</i> , 2018 , 14, e1802218	11	73
219	Cross-Linking Hollow Carbon Sheet Encapsulated CuP Nanocomposites for High Energy Density Sodium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 7018-7027	16.7	86
218	Octahedral Pd nanocages with porous shells converted from Co(OH)2 nanocages with nanosheet surfaces as robust electrocatalysts for ethanol oxidation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1578	3 ⁵³ 157	96 ²
217	Advanced 3D Current Collectors for Lithium-Based Batteries. <i>Advanced Materials</i> , 2018 , 30, e1802014	24	121
216	FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries. <i>Science China Chemistry</i> , 2018 , 61, 1151-1158	7.9	12
215	Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries. <i>Nanoscale</i> , 2018 , 10, 12430-12435	7.7	9
214	Cargos Rotate at Microtubule Intersections during Intracellular Trafficking. <i>Biophysical Journal</i> , 2018 , 114, 2900-2909	2.9	8
213	Selenium embedded in MOF-derived N-doped microporous carbon polyhedrons as a high performance cathode for sodiumBelenium batteries. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1574-1582	7.8	32
212	Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. <i>Energy Storage Materials</i> , 2018 , 12, 37-43	19.4	67
211	Exploring hydrogen molybdenum bronze for sodium ion storage: Performance enhancement by vertical graphene core and conductive polymer shell. <i>Nano Energy</i> , 2018 , 44, 265-271	17.1	62
210	Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3906-3912	13	80
209	3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702434	21.8	343

208	"Waltz" of Cell Membrane-Coated Nanoparticles on Lipid Bilayers: Tracking Single Particle Rotation in Ligand-Receptor Binding. <i>ACS Nano</i> , 2018 , 12, 11871-11880	16.7	23
207	Lipid Bilayer Disruption by Amphiphilic Janus Nanoparticles: The Role of Janus Balance. <i>Langmuir</i> , 2018 , 34, 12387-12393	4	10
206	CNT Interwoven Nitrogen and Oxygen Dual-Doped Porous Carbon Nanosheets as Free-Standing Electrodes for High-Performance Na-Se and K-Se Flexible Batteries. <i>Advanced Materials</i> , 2018 , 30, e1805	5 23 4	90
205	Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. <i>Nano Energy</i> , 2018 , 54, 304-312	17.1	66
204	Ultrathin Ti Nb O Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1804378	24	81
203	Boosting the Electrochemical Performance of Li-S Batteries with a Dual Polysulfides Confinement Strategy. <i>Small</i> , 2018 , 14, e1802516	11	47
202	Editorial for rare metals, special issue on solid state batteries. <i>Rare Metals</i> , 2018 , 37, 447-448	5.5	2
201	Toward True Lithium-Air Batteries. <i>Joule</i> , 2018 , 2, 815-817	27.8	16
2 00	Si-, Ge-, Sn-Based Anode Materials for Lithium-Ion Batteries: From Structure Design to Electrochemical Performance. <i>Small Methods</i> , 2017 , 1, 1600037	12.8	174
199	Sodium-Ion Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dual-Doping. <i>Advanced Science</i> , 2017 , 4, 1600468	13.6	132
198	Interrogating Cellular Functions with Designer Janus Particles. <i>Chemistry of Materials</i> , 2017 , 29, 1448-14	1606	25
197	Confined Amorphous Red Phosphorus in MOF-Derived N-Doped Microporous Carbon as a Superior Anode for Sodium-Ion Battery. <i>Advanced Materials</i> , 2017 , 29, 1605820	24	350
196	Janus Nanoparticles for T Cell Activation: Clustering Ligands to Enhance Stimulation. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 4410-4415	7.3	20
195	Energy Storage: Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture (Adv. Mater. 9/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
194	Synthesis of electrocatalytically functional carbon honeycombs through cooking with molecule precursors. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 6472-6481	6.7	12
193	New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. <i>Nano Letters</i> , 2017 , 17, 2034-2042	11.5	306
192	Multichannel Porous TiO Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance. <i>Small</i> , 2017 , 13, 1700129	11	125
191	Peapod-like Li VO /N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors. <i>Advanced Materials</i> , 2017 , 29, 1700142	24	207

190	Effect of partial PEGylation on particle uptake by macrophages. <i>Nanoscale</i> , 2017 , 9, 288-297	7.7	54
189	Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1700431	24	346
188	Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13882-13906	13	101
187	Carbon-Coated Li VO Spheres as Constituents of an Advanced Anode Material for High-Rate Long-Life Lithium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1701571	24	93
186	A High Power High Energy Na3V2(PO4)2F3 Sodium Cathode: Investigation of Transport Parameters, Rational Design and Realization. <i>Chemistry of Materials</i> , 2017 , 29, 5207-5215	9.6	109
185	N,S co-doped 3D mesoporous carbon@o3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12774-12781	13	137
184	Activated graphene with tailored pore structure parameters for long cycle-life lithiumBulfur batteries. <i>Nano Research</i> , 2017 , 10, 4305-4317	10	45
183	Recent progress in LiB and LiBe batteries. <i>Rare Metals</i> , 2017 , 36, 339-364	5.5	66
182	Binding S Se in 1D Carbon Nanofiber with C?S Bonding for High-Performance Flexible Li-S Batteries and Na-S Batteries. <i>Small</i> , 2017 , 13, 1603513	11	92
181	NaV(PO)@nitrogen,sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries. <i>Nanoscale</i> , 2017 , 9, 6048-6055	7.7	35
180	Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1605650	24	257
179	MoS-Based Nanocomposites for Electrochemical Energy Storage. <i>Advanced Science</i> , 2017 , 4, 1600289	13.6	278
178	Anchoring Nitrogen-Doped TiO Nanocrystals on Nitrogen-Doped 3D Graphene Frameworks for Enhanced Lithium Storage. <i>Chemistry - A European Journal</i> , 2017 , 23, 1757-1762	4.8	22
177	Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture. <i>Advanced Materials</i> , 2017 , 29, 1605607	24	97
176	Component-Customizable Porous Rare-Earth-Based Colloidal Spheres towards Highly Effective Catalysts and Bioimaging Applications. <i>Chemistry - A European Journal</i> , 2017 , 23, 16242-16248	4.8	3
175	Seeing the unseen: Imaging rotation in cells with designer anisotropic particles. <i>Micron</i> , 2017 , 101, 123-	13.13	9
174	High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode. <i>Advanced Energy Materials</i> , 2017 , 7, 1701336	21.8	298
173	2D sandwich-like nanosheets of ultrafine Sb nanoparticles anchored to graphene for high-efficiency sodium storage. <i>Nano Research</i> , 2017 , 10, 4360-4367	10	26

172	The nanoscale circuitry of battery electrodes. <i>Science</i> , 2017 , 358,	33.3	184
171	Reduced graphene oxide wrapped hollow molybdenum trioxide nanorod for high performance lithium-ion batteries. <i>Chinese Chemical Letters</i> , 2017 , 28, 2231-2234	8.1	13
170	Free-standing vanadium pentoxide nanoribbon film as a high-performance cathode for rechargeable sodium batteries. <i>Chinese Chemical Letters</i> , 2017 , 28, 2251-2253	8.1	12
169	Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries. <i>ACS Nano</i> , 2017 , 11, 12658-12667	16.7	275
168	Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. <i>Energy Storage Materials</i> , 2017 , 9, 112-118	19.4	38
167	NaV(PO) coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries. <i>Nanoscale</i> , 2017 , 9, 10880-10885	7.7	44
166	A novel hybrid artificial photosynthesis system using MoS2 embedded in carbon nanofibers as electron relay and hydrogen evolution catalyst. <i>Journal of Catalysis</i> , 2017 , 352, 35-41	7.3	27
165	High Performance Graphene/Ni P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk-Shell-Like Nanostructural Design. <i>Advanced Materials</i> , 2017 , 29, 1604015	24	193
164	Solution-processed multifunctional transparent conductive films based on long silver nanowires/polyimide structure with highly thermostable and antibacterial properties. <i>RSC Advances</i> , 2017 , 7, 28670-28676	3.7	11
163	Janus Particles for Biomedical Applications 2017 , 405-449		
163 162	Janus Particles for Biomedical Applications 2017, 405-449 Enhanced Pseudocapacitive Performance of ⊕MnO by Cation Preinsertion. ACS Applied Materials & amp; Interfaces, 2016, 8, 33732-33740	9.5	180
	Enhanced Pseudocapacitive Performance of #MnO by Cation Preinsertion. ACS Applied Materials	9.5	180
162	Enhanced Pseudocapacitive Performance of &MnO by Cation Preinsertion. ACS Applied Materials & Interfaces, 2016, 8, 33732-33740 Improvement of Lithium Storage Performance of Molybdenum Trioxide by a Synergistic Effect of		
162 161	Enhanced Pseudocapacitive Performance of MnO by Cation Preinsertion. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 33732-33740 Improvement of Lithium Storage Performance of Molybdenum Trioxide by a Synergistic Effect of Surface Coating and Oxygen Vacancies. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600730 Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode	4.6	13
162 161 160	Enhanced Pseudocapacitive Performance of MnO by Cation Preinsertion. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 33732-33740 Improvement of Lithium Storage Performance of Molybdenum Trioxide by a Synergistic Effect of Surface Coating and Oxygen Vacancies. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600730 Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries (Small 26/2016). <i>Small</i> , 2016 , 12, 3474-3474 A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In	4.6	13
162 161 160	Enhanced Pseudocapacitive Performance of EMnO by Cation Preinsertion. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 33732-33740 Improvement of Lithium Storage Performance of Molybdenum Trioxide by a Synergistic Effect of Surface Coating and Oxygen Vacancies. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600730 Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries (Small 26/2016). <i>Small</i> , 2016 , 12, 3474-3474 A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In Situ Hybridization and Improved Sodium Storage. <i>Advanced Materials</i> , 2016 , 28, 7774-82 Carbon-Coated NaV(PO) Anchored on Freestanding Graphite Foam for High-Performance	4.6 11 24	13 8 122
162 161 160 159	Enhanced Pseudocapacitive Performance of EMnO by Cation Preinsertion. <i>ACS Applied Materials & Mamp; Interfaces</i> , 2016 , 8, 33732-33740 Improvement of Lithium Storage Performance of Molybdenum Trioxide by a Synergistic Effect of Surface Coating and Oxygen Vacancies. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600730 Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries (Small 26/2016). <i>Small</i> , 2016 , 12, 3474-3474 A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In Situ Hybridization and Improved Sodium Storage. <i>Advanced Materials</i> , 2016 , 28, 7774-82 Carbon-Coated NaV(PO) Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes. <i>ACS Applied Materials & Materials</i> , 2016 , 8, 32360-32365 Lipid membrane-assisted condensation and assembly of amphiphilic Janus particles. <i>Soft Matter</i> ,	4.6 11 24 9.5	13 8 122 40

154	Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering. <i>Advanced Energy Materials</i> , 2016 , 6, 1502568	21.8	189
153	One-Dimensional Na3V2(PO4)3/C Nanowires as Cathode Materials for Long-Life and High Rate Na-Ion Batteries. <i>ChemNanoMat</i> , 2016 , 2, 726-731	3.5	28
152	Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube@raphene Hybrid Architectures for LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 1112-1119	15.6	246
151	Ultrathin Li4Ti5O12 Nanosheets as Anode Materials for Lithium and Sodium Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 16718-26	9.5	77
150	High Power-High Energy Sodium Battery Based on Threefold Interpenetrating Network. <i>Advanced Materials</i> , 2016 , 28, 2409-16	24	182
149	Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. <i>Nano Letters</i> , 2016 , 16, 1546-53	11.5	307
148	Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 6303-8	9.5	81
147	Highly Reversible and Ultrafast Sodium Storage in NaTi2(PO4)3 Nanoparticles Embedded in Nanocarbon Networks. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 689-95	9.5	73
146	Peapod-Like Carbon-Encapsulated Cobalt Chalcogenide Nanowires as Cycle-Stable and High-Rate Materials for Sodium-Ion Anodes. <i>Advanced Materials</i> , 2016 , 28, 7276-83	24	212
145	Self-Supported Nanotube Arrays of Sulfur-Doped TiO2 Enabling Ultrastable and Robust Sodium Storage. <i>Advanced Materials</i> , 2016 , 28, 2259-65	24	385
144	MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage. <i>Small</i> , 2016 , 12, 2354-64	11	274
143	Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network. <i>Small</i> , 2016 , 12, 2559-66	11	127
142	Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries. <i>Small</i> , 2016 , 12, 3522-9	11	119
141	Remote Control of T Cell Activation Using Magnetic Janus Particles. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7384-7	16.4	40
140	Remote Control of T Cell Activation Using Magnetic Janus Particles. <i>Angewandte Chemie</i> , 2016 , 128, 7510-7513	3.6	7
139	Janus particles for biological imaging and sensing. <i>Analyst, The</i> , 2016 , 141, 3526-39	5	107
138	Lithium Storage: Generalizable Synthesis of Metal-Sulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage (Adv. Mater. 1/2016). <i>Advanced Materials</i> , 2016 , 28, 2-2	24	2
137	LithiumBulfur Batteries: Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon NanotubeGraphene Hybrid Architectures for LithiumBulfur Batteries (Adv. Funct. Mater. 7/2016). Advanced Functional Materials, 2016, 26, 1144-1144	15.6	5

(2015-2016)

136	Sodium-Ion Batteries: High PowerHigh Energy Sodium Battery Based on Threefold Interpenetrating Network (Adv. Mater. 12/2016). <i>Advanced Materials</i> , 2016 , 28, 2408-2408	24	7
135	Generalizable Synthesis of Metal-Sulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage. <i>Advanced Materials</i> , 2016 , 28, 174-80	24	127
134	Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. <i>Science China Materials</i> , 2016 , 59, 287-321	7.1	109
133	Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. <i>Electrochimica Acta</i> , 2016 , 219, 592-603	6.7	138
132	Three-dimensionally interconnected TaS3 nanowire network as anode for high-performance flexible Li-ion battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 5629-33	9.5	19
131	Nanoconfined Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1402104	21.8	252
130	A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance: NaTi2(PO4)3 as an example. <i>Nanoscale</i> , 2015 , 7, 14723-9	7.7	56
129	Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 293, 976-982	8.9	27
128	Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 293, 799-805	8.9	90
127	Nanosheets of earth-abundant jarosite as novel anodes for high-rate and long-life lithium-ion batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 10518-24	9.5	14
126	Nanosheets: Rapid and Up-Scalable Fabrication of Free-Standing Metal Oxide Nanosheets for High-Performance Lithium Storage (Small 17/2015). <i>Small</i> , 2015 , 11, 2100-2100	11	
125	Sn-Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High-Rate and Long Life Li-Ion Batteries. <i>Advanced Functional Materials</i> , 2015 , 25, 3488-3496	15.6	142
124	Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible LiBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9438-944	15 ¹³	46
123	Jarosite Nanosheets Fabricated via Room-Temperature Synthesis as Cathode Materials for High-Rate Lithium Ion Batteries. <i>Chemistry of Materials</i> , 2015 , 27, 3143-3149	9.6	25
122	Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. <i>Nano Energy</i> , 2015 , 13, 693-701	17.1	105
121	Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. <i>Nano Energy</i> , 2015 , 18, 12-19	17.1	8o
120	An Advanced Sodium-Ion Battery Composed of Carbon Coated Nal/[PO]IIn a Porous Graphene Network. <i>Advanced Materials</i> , 2015 , 27, 6670-6	24	363
119	Doping the Li4Ti5O12 lattice with extra-large anions. <i>Materials Express</i> , 2015 , 5, 457-462	1.3	11

118	General Strategy for Fabricating Sandwich-like Graphene-Based Hybrid Films for Highly Reversible Lithium Storage. <i>ACS Applied Materials & Distriction</i> , 18320-6	9.5	22
117	Three-dimensionally interconnected nickellIntimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. <i>Nano Energy</i> , 2015 , 16, 389-398	17.1	137
116	Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS2/C nanocomposite. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20487-20493	13	64
115	Uniform yolkEhell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 3531-3538	35.4	350
114	MoS2graphene nanosheet©NT hybrids with excellent electrochemical performances for lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 77518-77526	3.7	38
113	Rapid and up-scalable fabrication of free-standing metal oxide nanosheets for high-performance lithium storage. <i>Small</i> , 2015 , 11, 2011-8	11	44
112	Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-ion Batteries. <i>Electrochimica Acta</i> , 2015 , 152, 178-186	6.7	56
111	A Flexible Porous Carbon Nanofibers-Selenium Cathode with Superior Electrochemical Performance for Both Li-Se and Na-Se Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1401377	21.8	191
110	Fast Li Storage in MoS2-Graphene-Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures. <i>Advanced Energy Materials</i> , 2015 , 5, 1401170	21.8	142
109	Anodes: Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage (Small 45/2015). <i>Small</i> , 2015 , 11, 5978-5978	11	
108	Cyclability: Sn-Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High-Rate and Long Life Li-Ion Batteries (Adv. Funct. Mater. 23/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 3446-3446	15.6	
107	Sodium-Ion Batteries: Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage (Small 40/2015). <i>Small</i> , 2015 , 11, 5330-5330	11	
106	A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries. <i>Advanced Science</i> , 2015 , 2, 1500200	13.6	158
105	Metal Sulphides: A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries (Adv. Sci. 12/2015). <i>Advanced Science</i> , 2015 , 2,	13.6	1
104	Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries. <i>Scientific Reports</i> , 2015 , 5, 14146	4.9	32
103	Spontaneous immortalization of mouse liver sinusoidal endothelial cells. <i>International Journal of Molecular Medicine</i> , 2015 , 35, 617-24	4.4	10
102	Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage. <i>Small</i> , 2015 , 11, 5381-7	11	60
101	Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 9768-9772	3.6	68

(2014-2015)

100	Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9632-6	16.4	214
99	Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. <i>Small</i> , 2015 , 11, 6026-35	11	75
98	Substrate Facet Effect on the Growth of Monolayer MoS2 on Au Foils. ACS Nano, 2015, 9, 4017-25	16.7	78
97	Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li-S batteries. <i>Nanoscale</i> , 2015 , 7, 10940-9	7.7	52
96	Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability. <i>Electrochemistry Communications</i> , 2015 , 57, 43-47	5.1	54
95	Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes. <i>ACS Nano</i> , 2015 , 9, 6610-8	16.7	213
94	Tracking single particle rotation: probing dynamics in four dimensions. <i>Analytical Methods</i> , 2015 , 7, 7020	372028	18
93	Tracking single-particle rotation during macrophage uptake. <i>Soft Matter</i> , 2015 , 11, 5346-52	3.6	21
92	Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 55136-55142	3.7	33
91	High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires. <i>Advanced Functional Materials</i> , 2015 , 25, 2335-2342	15.6	130
90	FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & Discourt & Discourt & Discou</i>	9.5	172
89	Flexible one-dimensional carbonBelenium composite nanofibers with superior electrochemical performance for LiBe/NaBe batteries. <i>Journal of Power Sources</i> , 2015 , 281, 461-469	8.9	99
88	Macrophage uptake of Janus particles depends upon Janus balance. <i>Langmuir</i> , 2015 , 31, 2833-8	4	25
87	In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5259-5265	13	85
86	3D VIDIhanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. <i>Nano Letters</i> , 2015 , 15, 1388-94	11.5	160
85	Carbon-Coated Germanium Nanowires on Carbon Nanofibers as Self-Supported Electrodes for Flexible Lithium-Ion Batteries. <i>Small</i> , 2015 , 11, 2762-7	11	82
84	Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2152-6	16.4	777
83	Size-based chromatography of signaling clusters in a living cell membrane. <i>Nano Letters</i> , 2014 , 14, 2293-	8 1.5	21

82	Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. <i>Nano Letters</i> , 2014 , 14, 2597-603	11.5	365
81	Nano-Li3V2(PO4)3 enwrapped into reduced graphene oxide sheets for lithium-ion batteries. Journal of Power Sources, 2014 , 265, 104-109	8.9	43
80	Precisely tunable engineering of sub-30 nm monodisperse oligonucleotide nanoparticles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 234-40	16.4	22
79	Facile synthesis of germaniumæduced graphene oxide composite as anode for high performance lithium-ion batteries. <i>RSC Advances</i> , 2014 , 4, 58184-58189	3.7	19
78	Single-Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. <i>Angewandte Chemie</i> , 2014 , 126, 2184-21	88 ⁶	138
77	Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. <i>Nano Letters</i> , 2014 , 14, 6387-92	11.5	227
76	Superior lithium storage in a 3D macroporous graphene framework/SnO[hanocomposite. <i>Nanoscale</i> , 2014 , 6, 7817-22	7.7	53
75	Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. <i>Nanoscale</i> , 2014 , 6, 1384-9	7.7	481
74	N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. <i>RSC Advances</i> , 2014 , 4, 16920-16927	3.7	47
73	Janus particles as artificial antigen-presenting cells for T cell activation. <i>ACS Applied Materials</i> & amp; Interfaces, 2014, 6, 18435-9	9.5	38
72	Direct evidence of a conversion mechanism in a NiSnO3 anode for lithium ion battery application. <i>RSC Advances</i> , 2014 , 4, 36301-36306	3.7	13
71	Highly reversible lithium storage in a 3D macroporous Ge@C composite. RSC Advances, 2014, 4, 37746-3	3 <i>3.7</i> 51	16
70	Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. <i>Nanoscale</i> , 2014 , 6, 5081-6	7.7	235
69	Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. <i>Nanoscale</i> , 2014 , 6, 4532-7	7.7	99
68	Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. <i>ACS Nano</i> , 2014 , 8, 7051-9	16.7	177
67	Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4. <i>Nano Letters</i> , 2014 , 14, 5342-9	11.5	27
66	Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. <i>Carbon</i> , 2014 , 78, 455-462	10.4	130
65	Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. <i>Nano Letters</i> , 2014 , 14, 2175-80	11.5	392

(2013-2014)

64	Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. <i>Nanoscale</i> , 2014 , 6, 693-8	7.7	225
63	Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage. <i>Nanoscale</i> , 2014 , 6, 11411-8	7.7	26
62	Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. <i>Advanced Materials</i> , 2014 , 26, 6025-30	24	192
61	One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2014 , 133, 515-521	6.7	14
60	Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode. <i>Nanoscale</i> , 2014 , 6, 9579-87	7.7	137
59	Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers. <i>RSC Advances</i> , 2014 , 4, 25220	3.7	24
58	Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 266, 323-331	8.9	55
57	Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries. <i>Electrochimica Acta</i> , 2014 , 132, 323-331	6.7	37
56	Cathodes with intrinsic redox overcharge protection: A new strategy towards safer Li-ion batteries. Journal of Power Sources, 2014 , 264, 155-160	8.9	9
55	Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries. <i>Electrochimica Acta</i> , 2014 , 132, 193-199	6.7	88
54	Facile synthesis of flower-like and yarn-like Fe2O3 spherical clusters as anode materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 93, 131-136	6.7	43
53	Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage. <i>Electrochemistry Communications</i> , 2013 , 28, 54-57	5.1	41
52	How half-coated janus particles enter cells. Journal of the American Chemical Society, 2013, 135, 19091-	416.4	48
51	Walnut-like vanadium oxide film with high rate performance as a cathode material for rechargeable lithium batteries. <i>Journal of Power Sources</i> , 2013 , 228, 7-13	8.9	9
50	Free-standing Ag/C coaxial hybrid electrodes as anodes for Li-ion batteries. <i>Nanoscale</i> , 2013 , 5, 11568-7	71 7.7	8
49	Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 20813-8	3.6	71
48	Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites. <i>Nanoscale</i> , 2013 , 5, 2647-50	7.7	58
47	Modulation of T cell signaling by the actin cytoskeleton. <i>Journal of Cell Science</i> , 2013 , 126, 1049-58	5.3	77

46	Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 91, 43-49	6.7	72
45	Synthesis and electrochemical properties of high performance yolk-structured LiMn2O4 microspheres for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 860-867	13	31
44	Three-Dimensional (3D) Bicontinuous Au/Amorphous-Ge Thin Films as Fast and High-Capacity Anodes for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 281-285	21.8	109
43	Nano-Pearl-String TiNb2O7 as Anodes for Rechargeable Lithium Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 49-53	21.8	193
42	Phase transformation and lithiation effect on electronic structure of Li(x)FePO4: an in-depth study by soft X-ray and simulations. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13708-15	16.4	121
41	Electrostatic spray deposition of nanoporous CoO/Co composite thin films as anode materials for lithium-ion batteries. <i>Applied Surface Science</i> , 2012 , 259, 769-773	6.7	16
40	Facile synthesis of micrometer Li1.05Mn1.95O4 and its low temperature performance for high power lithium ion batteries. <i>Electrochimica Acta</i> , 2012 , 81, 191-196	6.7	15
39	Myosin IIA modulates T cell receptor transport and CasL phosphorylation during early immunological synapse formation. <i>PLoS ONE</i> , 2012 , 7, e30704	3.7	57
38	A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries. <i>Chemical Engineering Journal</i> , 2012 , 192, 226-231	14.7	48
37	A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. <i>Materials Express</i> , 2012 , 2, 197-212	1.3	350
36	Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4661-3	16.4	200
35	Li storage in 3D nanoporous Au-supported nanocrystalline tin. <i>Advanced Materials</i> , 2011 , 23, 2443-7	24	183
34	Electrospinning of Highly Electroactive Carbon-Coated Single-Crystalline LiFePO4 Nanowires. <i>Angewandte Chemie</i> , 2011 , 123, 6402-6406	3.6	24
33	Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6278-82	16.4	211
32	How liposomes diffuse in concentrated liposome suspensions. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 2748-53	3.4	13
31	Direct Imaging of Lithium Ions Using Aberration-Corrected Annular-Bright-Field Scanning Transmission Electron Microscopy and Associated Contrast Mechanisms. <i>Materials Express</i> , 2011 , 1, 43-	5 ð ·3	18
30	Porous SnO2/CNT composite anodes: Influence of composition and deposition temperature on the electrochemical performance. <i>Journal of Materials Research</i> , 2010 , 25, 1554-1560	2.5	8
29	Thermodynamics and liquid phase separation in the CultoNb ternary alloys. <i>Journal of Materials Research</i> , 2010 , 25, 1706-1717	2.5	12

(2006-2010)

28	Vesicle budding induced by a pore-forming peptide. <i>Journal of the American Chemical Society</i> , 2010 , 132, 195-201	16.4	59
27	Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. <i>Advanced Materials</i> , 2010 , 22, 2247-50	24	518
26	Encapsulation of Sn@carbon Nanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries. <i>Angewandte Chemie</i> , 2009 , 121, 6607-6611	3.6	38
25	Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6485-9	16.4	530
24	Some new facts on electrochemical reaction mechanism for transition metal oxide electrodes. Journal of Power Sources, 2009 , 189, 552-556	8.9	37
23	Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries. <i>Electrochimica Acta</i> , 2009 , 54, 7227-7230	6.7	74
22	Response to Comment on P CB Association with Model Phospholipid Bilayers [Invironmental Science & Science	10.3	
21	Pearling of lipid vesicles induced by nanoparticles. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14158-9	16.4	93
20	Biomolecular Science of Liposome-Nanoparticle Constructs. <i>Molecular Crystals and Liquid Crystals</i> , 2009 , 507, 18-25	0.5	10
19	Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15984-5	16.4	377
18	Electrospun carbondobalt composite nanofiber as an anode material for lithium ion batteries. <i>Scripta Materialia</i> , 2008 , 58, 405-408	5.6	88
17	Facile Electrochemical Synthesis of Single-Crystalline Copper Nanospheres, Pyramids, and Truncated Pyramidal Nanoparticles from Lithia/Cuprous Oxide Composite Thin Films. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4176-4179	3.8	27
16	PCB association with model phospholipid bilayers. <i>Environmental Science & Environmental Science & Env</i>	10.3	10
15	Cationic Nanoparticles Stabilize Zwitterionic Liposomes Better than Anionic Ones. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8233-8236	3.8	49
14	Nanoporous cuprous oxide/lithia composite anode with capacity increasing characteristic and high rate capability. <i>Nanotechnology</i> , 2007 , 18, 055706	3.4	65
13	Electrostatic Spray Assembly of Nanostructured La[sub 0.7]Ca[sub 0.3]CrO[sub 3¶Films. <i>Journal of the Electrochemical Society</i> , 2007 , 154, E107	3.9	8
12	Nanoparticle-assisted surface immobilization of phospholipid liposomes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9026-7	16.4	54
11	Effect of lithia and substrate on the electrochemical performance of a lithia/cobalt oxide composite thin-film anode. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 826-31	4.5	8

10	Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angewandte Chemie - International Edition, 2005 , 44, 7085-9	16.4	293
9	Nickel-Foam-Supported Reticular CoOli2O Composite Anode Materials for Lithium Ion Batteries. <i>Angewandte Chemie</i> , 2005 , 117, 7247-7251	3.6	21
8	Sequential Assembly Tailored Interior of Porous Carbon Spheres for Boosted Water Decontamination through Peroxymonosulfate Activation. <i>Advanced Functional Materials</i> ,2111184	15.6	1
7	Engineering of Crosslinked Network and Functional Interlayer to Boost Cathode Performance of Tannin for Potassium Metal Batteries. <i>Advanced Functional Materials</i> ,2200178	15.6	O
6	Homogeneous Na Deposition Enabling High-Energy Na-Metal Batteries. <i>Advanced Functional Materials</i> ,2110280	15.6	6
5	Self-Assembled VS4 Hierarchitectures with Enhanced Capacity and Stability for Sodium Storage. Energy and Environmental Materials,	13	9
4	Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. <i>Informali</i> DMaterilly,	23.1	8
3	From 0D to 3D: Dimensional Control of Bismuth for Potassium Storage with Superb Kinetics and Cycling Stability. <i>Advanced Energy Materials</i> ,2102263	21.8	8
2	Introducing Metal®rganic Nanotubes to Derive High-Density Bimetal Alloy Nanoparticles Supported on Nanorods for Lithium®xygen Batteries. <i>Advanced Materials Interfaces</i> ,2102110	4.6	1
1	Bifunctional Catalyst for LiquidBolid Redox Conversion in Room-Temperature SodiumBulfur Batteries. <i>Small Structures</i> ,2200020	8.7	2