

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/715980/publications.pdf Version: 2024-02-01

VAN VII

#	Article	IF	CITATIONS
1	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49, 1569-1614.	18.7	1,326
2	Single‣ayered Ultrasmall Nanoplates of MoS ₂ Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. Angewandte Chemie - International Edition, 2014, 53, 2152-2156.	7.2	826
3	Reversible Storage of Lithium in Silverâ€Coated Threeâ€Dimensional Macroporous Silicon. Advanced Materials, 2010, 22, 2247-2250.	11.1	558
4	Encapsulation of Sn@carbon Nanoparticles in Bambooâ€like Hollow Carbon Nanofibers as an Anode Material in Lithiumâ€Based Batteries. Angewandte Chemie - International Edition, 2009, 48, 6485-6489.	7.2	551
5	Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale, 2014, 6, 1384-1389.	2.8	542
6	Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019, 55, 93-114.	8.2	533
7	A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Materials Express, 2012, 2, 197-212.	0.2	522
8	Challenges and Perspectives for NASICONâ€⊺ype Electrode Materials for Advanced Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700431.	11,1	499
9	Solid‣tate Sodium Batteries. Advanced Energy Materials, 2018, 8, 1703012.	10.2	478
10	3D Amorphous Carbon with Controlled Porous and Disordered Structures as a Highâ€Rate Anode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702434.	10.2	467
11	Self‣upported Nanotube Arrays of Sulfurâ€Đoped TiO ₂ Enabling Ultrastable and Robust Sodium Storage. Advanced Materials, 2016, 28, 2259-2265.	11.1	457
12	An Advanced Sodiumâ€lon Battery Composed of Carbon Coated Na ₃ V ₂ (PO ₄) ₃ in a Porous Graphene Network. Advanced Materials, 2015, 27, 6670-6676.	11.1	448
13	Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li Cathodes. Nano Letters, 2014, 14, 2175-2180.	4.5	446
14	Confined Amorphous Red Phosphorus in MOFâ€Derived Nâ€Doped Microporous Carbon as a Superior Anode for Sodiumâ€Ion Battery. Advanced Materials, 2017, 29, 1605820.	11.1	409
15	Tin Nanoparticles Encapsulated in Porous Multichannel Carbon Microtubes: Preparation by Single-Nozzle Electrospinning and Application as Anode Material for High-Performance Li-Based Batteries. Journal of the American Chemical Society, 2009, 131, 15984-15985.	6.6	404
16	Uniform yolk–shell Sn ₄ P ₃ @C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy and Environmental Science, 2015, 8, 3531-3538.	15.6	401
17	Self-Supported Li ₄ Ti ₅ O ₁₂ –C Nanotube Arrays as High-Rate and Long-Life Anode Materials for Flexible Li-Ion Batteries. Nano Letters, 2014, 14, 2597-2603.	4.5	397
18	New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Letters, 2017, 17, 2034-2042.	4.5	386

#	Article	IF	CITATIONS
19	MoS ₂ â€Based Nanocomposites for Electrochemical Energy Storage. Advanced Science, 2017, 4, 1600289.	5.6	374
20	Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries. ACS Nano, 2017, 11, 12658-12667.	7.3	373
21	High Energy and High Power Lithium″on Capacitors Based on Boron and Nitrogen Dualâ€Đoped 3D Carbon Nanofibers as Both Cathode and Anode. Advanced Energy Materials, 2017, 7, 1701336.	10.2	363
22	Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. Nano Letters, 2016, 16, 1546-1553.	4.5	360
23	Sodium/Potassiumâ€lon Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering. Advanced Materials, 2020, 32, e1904320.	11.1	335
24	Dualâ€Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605650.	11.1	325
25	Nickel-Foam-Supported Reticular CoO-Li2O Composite Anode Materials for Lithium Ion Batteries. Angewandte Chemie - International Edition, 2005, 44, 7085-7089.	7.2	313
26	MOFâ€Derived Hollow Co ₉ S ₈ Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Liâ€Ion Storage. Small, 2016, 12, 2354-2364.	5.2	306
27	Nanoconfined Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₃ Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1402104.	10.2	305
28	Peapodâ€like Li ₃ VO ₄ /Nâ€Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for Highâ€Energy Lithiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1700142.	11.1	298
29	Facile Solidâ€State Growth of 3D Wellâ€Interconnected Nitrogenâ€Rich Carbon Nanotube–Graphene Hybrid Architectures for Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 1112-1119.	7.8	281
30	A Dualâ€Functional Conductive Framework Embedded with TiNâ€VN Heterostructures for Highly Efficient Polysulfide and Lithium Regulation toward Stable Li–S Full Batteries. Advanced Materials, 2020, 32, e1905658.	11.1	276
31	Multicore–Shell Bi@Nâ€doped Carbon Nanospheres for High Power Density and Long Cycle Life Sodium― and Potassiumâ€Ion Anodes. Advanced Functional Materials, 2019, 29, 1809195.	7.8	268
32	Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale, 2014, 6, 5081.	2.8	266
33	Synthesizing Porous NaTi ₂ (PO ₄) ₃ Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes. ACS Nano, 2015, 9, 6610-6618.	7.3	260
34	Facile Synthesis of Highly Porous Ni–Sn Intermetallic Microcages with Excellent Electrochemical Performance for Lithium and Sodium Storage. Nano Letters, 2014, 14, 6387-6392.	4.5	257
35	Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale, 2014, 6, 693-698.	2.8	251
36	Three-Dimensional Ordered Macroporous Metal–Organic Framework Single Crystal-Derived Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. Nano Letters, 2019, 19, 4965-4973.	4.5	246

#	Article	IF	CITATIONS
37	Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 9632-9636.	7.2	245
38	Enhanced Pseudocapacitive Performance of α-MnO ₂ by Cation Preinsertion. ACS Applied Materials & Interfaces, 2016, 8, 33732-33740.	4.0	241
39	Boosting Potassium-Ion Battery Performance by Encapsulating Red Phosphorus in Free-Standing Nitrogen-Doped Porous Hollow Carbon Nanofibers. Nano Letters, 2019, 19, 1351-1358.	4.5	239
40	Peapodâ€Like Carbonâ€Encapsulated Cobalt Chalcogenide Nanowires as Cycleâ€Stable and Highâ€Rate Materials for Sodiumâ€Ion Anodes. Advanced Materials, 2016, 28, 7276-7283.	11.1	237
41	Siâ€, Geâ€, Snâ€Based Anode Materials for Lithiumâ€lon Batteries: From Structure Design to Electrochemical Performance. Small Methods, 2017, 1, 1600037.	4.6	237
42	The nanoscale circuitry of battery electrodes. Science, 2017, 358, .	6.0	235
43	A Flexible Porous Carbon Nanofibersâ€Selenium Cathode with Superior Electrochemical Performance for Both Liâ€Se and Naâ€Se Batteries. Advanced Energy Materials, 2015, 5, 1401377.	10.2	230
44	Na ₃ V ₂ (PO ₄) ₃ : an advanced cathode for sodium-ion batteries. Nanoscale, 2019, 11, 2556-2576.	2.8	227
45	Electrospinning of Highly Electroactive Carbonâ€Coated Singleâ€Crystalline LiFePO ₄ Nanowires. Angewandte Chemie - International Edition, 2011, 50, 6278-6282.	7.2	223
46	2D material as anode for sodium ion batteries: Recent progress and perspectives. Energy Storage Materials, 2019, 16, 323-343.	9.5	222
47	"Nanoâ€Pearlâ€String―TiNb ₂ O ₇ as Anodes for Rechargeable Lithium Batteries. Advanced Energy Materials, 2013, 3, 49-53.	10.2	220
48	High Performance Graphene/Ni ₂ P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk–Shell‣ike Nanostructural Design. Advanced Materials, 2017, 29, 1604015.	11.1	220
49	Direct Observation of Lithium Staging in Partially Delithiated LiFePO ₄ at Atomic Resolution. Journal of the American Chemical Society, 2011, 133, 4661-4663.	6.6	219
50	Superior Sodium Storage in Na ₂ Ti ₃ O ₇ Nanotube Arrays through Surface Engineering. Advanced Energy Materials, 2016, 6, 1502568.	10.2	219
51	Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nature Communications, 2019, 10, 4244.	5.8	219
52	Advanced 3D Current Collectors for Lithiumâ€Based Batteries. Advanced Materials, 2018, 30, e1802014.	11.1	218
53	Self‣upported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1902228.	11.1	216
54	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8986-8996.	7.3	215

#	Article	lF	CITATIONS
55	FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2015, 7, 27804-27809.	4.0	213
56	Peering into Alloy Anodes for Sodiumâ€lon Batteries: Current Trends, Challenges, and Opportunities. Advanced Functional Materials, 2019, 29, 1808745.	7.8	209
57	Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. Science China Materials, 2020, 63, 2089-2118.	3.5	208
58	High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network. Advanced Materials, 2016, 28, 2409-2416.	11.1	205
59	Advances in the Development of Singleâ€Atom Catalysts for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2200102.	11.1	202
60	Carbonâ€Encapsulated Pyrite as Stable and Earthâ€Abundant High Energy Cathode Material for Rechargeable Lithium Batteries. Advanced Materials, 2014, 26, 6025-6030.	11.1	201
61	Li Storage in 3D Nanoporous Au‣upported Nanocrystalline Tin. Advanced Materials, 2011, 23, 2443-2447.	11.1	198
62	Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries. ACS Nano, 2014, 8, 7051-7059.	7.3	198
63	3D V ₆ O ₁₃ Nanotextiles Assembled from Interconnected Nanogrooves as Cathode Materials for High-Energy Lithium Ion Batteries. Nano Letters, 2015, 15, 1388-1394.	4.5	194
64	A General Strategy to Fabricate Carbon oated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for Highâ€Performance Lithium and Sodium Ion Batteries. Advanced Science, 2015, 2, 1500200.	5.6	193
65	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogenâ€Doped Carbon: Superior Potassiumâ€ion Storage and Insight into Potassium Storage Mechanism. Advanced Materials, 2020, 32, e2000958.	11.1	192
66	Highly Reversible Na Storage in Na ₃ V ₂ (PO ₄) ₃ by Optimizing Nanostructure and Rational Surface Engineering. Advanced Energy Materials, 2018, 8, 1800068.	10.2	186
67	Transition metal chalcogenide anodes for sodium storage. Materials Today, 2020, 35, 131-167.	8.3	186
68	Regulating Lithium Nucleation and Deposition via MOFâ€Đerived Co@Câ€Modified Carbon Cloth for Stable Li Metal Anode. Advanced Functional Materials, 2020, 30, 1909159.	7.8	170
69	Sodiumâ€ion Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dualâ€Doping. Advanced Science, 2017, 4, 1600468.	5.6	164
70	3D Flexible, Conductive, and Recyclable Ti ₃ C ₂ T _{<i>x</i>} MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14, 8678-8688.	7.3	164
71	N,S co-doped 3D mesoporous carbon–Co ₃ Si ₂ O ₅ (OH) ₄ architectures for high-performance flexible pseudo-solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 12774-12781.	5.2	160
72	Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4913-4921.	5.2	160

#	Article	IF	CITATIONS
73	A Mixed Lithiumâ€lon Conductive Li ₂ S/Li ₂ Se Protection Layer for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2001607.	7.8	158
74	Snâ€Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for Highâ€Rate and Long Life Liâ€lon Batteries. Advanced Functional Materials, 2015, 25, 3488-3496.	7.8	156
75	Boosting Potassium Storage Performance of the Cu ₂ S Anode <i>via</i> Morphology Engineering and Electrolyte Chemistry. ACS Nano, 2020, 14, 6024-6033.	7.3	156
76	Fast Li Storage in MoS ₂ â€Grapheneâ€Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures. Advanced Energy Materials, 2015, 5, 1401170.	10.2	155
77	The Promise and Challenge of Phosphorusâ€Based Composites as Anode Materials for Potassiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1901414.	11.1	155
78	Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries. Energy Storage Materials, 2019, 18, 165-173.	9.5	155
79	Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode. Nanoscale, 2014, 6, 9579.	2.8	153
80	Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochimica Acta, 2016, 219, 592-603.	2.6	151
81	Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy, 2015, 16, 389-398.	8.2	150
82	Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy, 2019, 60, 171-178.	8.2	149
83	High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires. Advanced Functional Materials, 2015, 25, 2335-2342.	7.8	148
84	Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dualâ€Đoped Carbon Network. Small, 2016, 12, 2559-2566.	5.2	147
85	Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon, 2014, 78, 455-462.	5.4	146
86	Generalizable Synthesis of Metal‧ulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage. Advanced Materials, 2016, 28, 174-180.	11.1	145
87	Multichannel Porous TiO ₂ Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance. Small, 2017, 13, 1700129.	5.2	145
88	A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In Situ Hybridization and Improved Sodium Storage. Advanced Materials, 2016, 28, 7774-7782.	11.1	142
89	A High Power–High Energy Na ₃ V ₂ (PO ₄) ₂ F ₃ Sodium Cathode: Investigation of Transport Parameters, Rational Design and Realization. Chemistry of Materials, 2017, 29, 5207-5215.	3.2	141
90	29. 5207-5215. Metal Chalcogenides: Paving the Way for Highâ€Performance Sodium/Potassiumâ€Ion Batteries. Small Methods, 2020, 4, 1900563.	4.6	140

#	Article	IF	CITATIONS
91	Janus particles for biological imaging and sensing. Analyst, The, 2016, 141, 3526-3539.	1.7	138
92	Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy, 2019, 58, 355-364.	8.2	137
93	Phase Transformation and Lithiation Effect on Electronic Structure of Li _{<i>x</i>} FePO ₄ : An In-Depth Study by Soft X-ray and Simulations. Journal of the American Chemical Society, 2012, 134, 13708-13715.	6.6	136
94	Nitrogen-Doped Ordered Mesoporous Anatase TiO ₂ Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries. Small, 2016, 12, 3522-3529.	5.2	134
95	Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 13882-13906.	5.2	134
96	Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition. Nano Letters, 2020, 20, 2724-2732.	4.5	134
97	CNT Interwoven Nitrogen and Oxygen Dualâ€Doped Porous Carbon Nanosheets as Freeâ€Standing Electrodes for Highâ€Performance Naâ€Se and Kâ€Se Flexible Batteries. Advanced Materials, 2018, 30, e1805234.	11.1	132
98	Niobiumâ€Based Oxides Toward Advanced Electrochemical Energy Storage: Recent Advances and Challenges. Small, 2019, 15, e1804884.	5.2	130
99	The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS Nano, 2021, 15, 47-80.	7.3	130
100	Optimizing the Void Size of Yolk–Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries. Nano Letters, 2020, 20, 758-767.	4.5	129
101	Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy, 2015, 13, 693-701.	8.2	124
102	Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Science China Materials, 2016, 59, 287-321.	3.5	124
103	g ₃ N ₄ Derivative Artificial Organic/Inorganic Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2020, 10, 2002647.	10.2	123
104	Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture. Advanced Materials, 2017, 29, 1605607.	11.1	122
105	Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 395-427.	13.1	122
106	Lithium Difluorophosphateâ€Based Dualâ€Salt Low Concentration Electrolytes for Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 2001440.	10.2	121
107	Carbonâ€Coated Li ₃ VO ₄ Spheres as Constituents of an Advanced Anode Material for Highâ€Rate Longâ€Life Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1701571.	11.1	119
108	Ultrathin Ti ₂ Nb ₂ O ₉ Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodiumâ€ion Batteries. Advanced Materials, 2018, 30, e1804378.	11.1	117

#	Article	IF	CITATIONS
109	Oxyvanite V ₃ O ₅ : A new intercalationâ€type anode for lithiumâ€ion battery. InformaÄnÃ-Materiály, 2019, 1, 251-259.	8.5	117
110	Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries. Journal of Power Sources, 2015, 281, 461-469.	4.0	116
111	Threeâ€Dimensional (3D) Bicontinuous Au/Amorphousâ€Ge Thin Films as Fast and Highâ€Capacity Anodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 281-285.	10.2	115
112	Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode. EScience, 2021, 1, 75-82.	25.0	115
113	Binding S _{0.6} Se _{0.4} in 1D Carbon Nanofiber with Cĩ£¿S Bonding for Highâ€Performance Flexible Li–S Batteries and Na–S Batteries. Small, 2017, 13, 1603513.	5.2	114
114	A Sulfur–Limoneneâ€Based Electrode for Lithium–Sulfur Batteries: Highâ€Performance by Selfâ€Protection. Advanced Materials, 2018, 30, e1706643.	11.1	114
115	Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. Nanoscale, 2014, 6, 4532-4537.	2.8	113
116	Toward High Energy Density All Solid‣tate Sodium Batteries with Excellent Flexibility. Advanced Energy Materials, 2020, 10, 1903698.	10.2	111
117	Advances in metal phosphides for sodiumâ€ion batteries. SusMat, 2021, 1, 359-392.	7.8	109
118	Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6, 3906-3912.	5.2	108
119	Regulating Lithium Nucleation via CNTs Modifying Carbon Cloth Film for Stable Li Metal Anode. Small, 2019, 15, e1803734.	5.2	108
120	Binding Sulfurâ€Ðoped Nb ₂ O ₅ Hollow Nanospheres on Sulfurâ€Ðoped Graphene Networks for Highly Reversible Sodium Storage. Advanced Functional Materials, 2018, 28, 1800394.	7.8	106
121	The State and Challenges of Anode Materials Based on Conversion Reactions for Sodium Storage. Small, 2018, 14, e1703671.	5.2	106
122	Unraveling the Nature of Excellent Potassium Storage in Smallâ€Molecule Se@Peapodâ€Like Nâ€Doped Carbon Nanofibers. Advanced Materials, 2020, 32, e2003879.	11.1	104
123	Pearling of Lipid Vesicles Induced by Nanoparticles. Journal of the American Chemical Society, 2009, 131, 14158-14159.	6.6	103
124	Multi-electron reaction materials for sodium-based batteries. Materials Today, 2018, 21, 960-973.	8.3	103
125	A Flexible Sulfurâ€Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage. Small, 2018, 14, e1802218.	5.2	103
126	Red Phosphorousâ€Derived Protective Layers with High Ionic Conductivity and Mechanical Strength on Dendriteâ€Free Sodium and Potassium Metal Anodes. Advanced Energy Materials, 2021, 11, 2003381.	10.2	102

#	Article	IF	CITATIONS
127	Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries. Electrochimica Acta, 2014, 132, 193-199.	2.6	101
128	Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries. Journal of Power Sources, 2015, 293, 799-805.	4.0	101
129	Cross-Linking Hollow Carbon Sheet Encapsulated CuP ₂ Nanocomposites for High Energy Density Sodium-Ion Batteries. ACS Nano, 2018, 12, 7018-7027.	7.3	99
130	Substrate Facet Effect on the Growth of Monolayer MoS ₂ on Au Foils. ACS Nano, 2015, 9, 4017-4025.	7.3	97
131	Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy, 2015, 18, 12-19.	8.2	97
132	An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy, 2018, 48, 448-455.	8.2	97
133	Electrospun carbon–cobalt composite nanofiber as an anode material for lithium ion batteries. Scripta Materialia, 2008, 58, 405-408.	2.6	95
134	Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-lon Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 6303-6308.	4.0	94
135	Encapsulation of SeS ₂ into Nitrogen-Doped Free-Standing Carbon Nanofiber Film Enabling Long Cycle Life and High Energy Density K-SeS ₂ Battery. ACS Nano, 2019, 13, 4695-4704.	7.3	94
136	Boosting High-Performance in Lithium–Sulfur Batteries via Dilute Electrolyte. Nano Letters, 2020, 20, 5391-5399.	4.5	93
137	Singleâ€Atom Iron Anchored Tubular gâ€C ₃ N ₄ Catalysts for Ultrafast Fentonâ€Like Reaction: Roles of Highâ€Valency Ironâ€Oxo Species and Organic Radicals. Advanced Materials, 2022, 34, .	11.1	93
138	In situ reduction and coating of SnS ₂ nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. Journal of Materials Chemistry A, 2015, 3, 5259-5265.	5.2	92
139	Modulation of T cell signaling by the actin cytoskeleton. Journal of Cell Science, 2013, 126, 1049-1058.	1.2	90
140	Vanadium-Based Materials: Next Generation Electrodes Powering the Battery Revolution?. Accounts of Chemical Research, 2020, 53, 1660-1671.	7.6	89
141	Grapheneâ€Protected 3D Sbâ€based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. Small, 2015, 11, 6026-6035.	5.2	87
142	Ultrathin Li ₄ Ti ₅ O ₁₂ Nanosheets as Anode Materials for Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2016, 8, 16718-16726.	4.0	87
143	Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. Journal of Materials Chemistry A, 2019, 7, 15774-15781.	5.2	87
144	A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic Efficiency: Free-standing porous carbon nanofiber film derived from bacterial cellulose. Energy Storage Materials, 2019, 22, 105-112.	9.5	87

#	Article	IF	CITATIONS
145	Carbonâ€Coated Germanium Nanowires on Carbon Nanofibers as Selfâ€Supported Electrodes for Flexible Lithiumâ€lon Batteries. Small, 2015, 11, 2762-2767.	5.2	85
146	A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery. Nano-Micro Letters, 2020, 12, 67.	14.4	85
147	Frontiers for Room-Temperature Sodium–Sulfur Batteries. ACS Energy Letters, 2021, 6, 529-536.	8.8	85
148	Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Materials, 2018, 12, 37-43.	9.5	85
149	Recent progress in Li–S and Li–Se batteries. Rare Metals, 2017, 36, 339-364.	3.6	84
150	3D Honeycomb Architecture Enables a Highâ€Rate and Longâ€Life Iron (III) Fluoride–Lithium Battery. Advanced Materials, 2019, 31, e1905146.	11.1	84
151	Harnessing the Volume Expansion of MoS ₃ Anode by Structure Engineering to Achieve High Performance Beyond Lithiumâ€Based Rechargeable Batteries. Advanced Materials, 2021, 33, e2106232.	11.1	83
152	Highly Reversible and Ultrafast Sodium Storage in NaTi ₂ (PO ₄) ₃ Nanoparticles Embedded in Nanocarbon Networks. ACS Applied Materials & Interfaces, 2016, 8, 689-695.	4.0	82
153	Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy and Environmental Science, 2020, 13, 821-829.	15.6	82
154	Design Principles of Sodium/Potassium Protection Layer for Highâ€Power Highâ€Energy Sodium/Potassiumâ€Metal Batteries in Carbonate Electrolytes: a Case Study of Na ₂ Te/K ₂ Te. Advanced Materials, 2021, 33, e2106353.	11.1	82
155	Effect of partial PEGylation on particle uptake by macrophages. Nanoscale, 2017, 9, 288-297.	2.8	81
156	Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries. Electrochimica Acta, 2009, 54, 7227-7230.	2.6	80
157	Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy, 2018, 54, 304-312.	8.2	80
158	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€Storage Performance. Angewandte Chemie - International Edition, 2019, 58, 7238-7243.	7.2	80
159	Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochimica Acta, 2013, 91, 43-49.	2.6	79
160	A Freestanding and Longâ€Life Sodium–Selenium Cathode by Encapsulation of Selenium into Microporous Multichannel Carbon Nanofibers. Small, 2018, 14, 1703252.	5.2	79
161	Hierarchical Microtubes Constructed by MoS ₂ Nanosheets with Enhanced Sodium Storage Performance. ACS Nano, 2020, 14, 15577-15586.	7.3	79
162	Ultrafast Potassium Storage in F-Induced Ultra-High Edge-Defective Carbon Nanosheets. ACS Nano, 2021, 15, 10217-10227.	7.3	79

#	Article	IF	CITATIONS
163	Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 20813.	1.3	78
164	Mo ₂ N–W ₂ N Heterostructures Embedded in Spherical Carbon Superstructure as Highly Efficient Polysulfide Electrocatalysts for Stable Roomâ€Temperature Na–S Batteries. Advanced Materials, 2021, 33, e2103846.	11.1	78
165	A Lowâ€Temperature Sodiumâ€Ion Full Battery: Superb Kinetics and Cycling Stability. Advanced Functional Materials, 2021, 31, 2009458.	7.8	77
166	Nanoporous cuprous oxide/lithia composite anode with capacity increasing characteristic and high rate capability. Nanotechnology, 2007, 18, 055706.	1.3	74
167	Progress and Prospects of Transition Metal Sulfides for Sodium Storage. Advanced Fiber Materials, 2020, 2, 314-337.	7.9	74
168	Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/Kâ€Metal Batteries. Advanced Materials, 2022, 34, e2109439.	11.1	73
169	A Highâ€Efficiency Mo ₂ C Electrocatalyst Promoting the Polysulfide Redox Kinetics for Na–S Batteries. Advanced Materials, 2022, 34, e2200479.	11.1	72
170	Vesicle Budding Induced by a Pore-Forming Peptide. Journal of the American Chemical Society, 2010, 132, 195-201.	6.6	71
171	Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS ₂ /C nanocomposite. Journal of Materials Chemistry A, 2015, 3, 20487-20493.	5.2	71
172	Design Nitrogen (N) and Sulfur (S) Coâ€Doped 3D Graphene Network Architectures for Highâ€Performance Sodium Storage. Small, 2018, 14, 1703471.	5.2	71
173	Topotactic Transformation Synthesis of 2D Ultrathin GeS ₂ Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries. ACS Nano, 2020, 14, 531-540.	7.3	71
174	Airâ€stable inorganic solidâ€state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. InformaÄnÃ-Materiály, 2022, 4, .	8.5	71
175	Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage. Small, 2015, 11, 5381-5387.	5.2	69
176	Exploring hydrogen molybdenum bronze for sodium ion storage: Performance enhancement by vertical graphene core and conductive polymer shell. Nano Energy, 2018, 44, 265-271.	8.2	69
177	Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nature Communications, 2021, 12, 5786.	5.8	69
178	Metal–Organic Framework-Derived Nanoconfinements of CoF ₂ and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery. ACS Nano, 2021, 15, 1509-1518.	7.3	69
179	Tinâ€Based Anode Materials for Stable Sodium Storage: Progress and Perspective. Advanced Materials, 2022, 34, e2106895.	11.1	68
180	An Openâ€Ended Ni ₃ S ₂ –Co ₉ S ₈ Heterostructures Nanocage Anode with Enhanced Reaction Kinetics for Superior Potassiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2201420.	11.1	68

#	Article	IF	CITATIONS
181	Advantageous Functional Integration of Adsorptionâ€Intercalationâ€Conversion Hybrid Mechanisms in 3D Flexible Nb ₂ O ₅ @Hard Carbon@MoS ₂ @Soft Carbon Fiber Paper Anodes for Ultrafast and Superâ€Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1908665.	7.8	67
182	Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation. PLoS ONE, 2012, 7, e30704.	1.1	65
183	High‣afety Nonaqueous Electrolytes and Interphases for Sodiumâ€Ion Batteries. Small, 2019, 15, e1805479.	5.2	65
184	Manipulating the Electronic Structure of Nickel <i>via</i> Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na–S Batteries. ACS Nano, 2021, 15, 15218-15228.	7.3	64
185	Next Generation Batteries: Aim for the Future. Advanced Energy Materials, 2017, 7, 1703223.	10.2	63
186	Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability. Electrochemistry Communications, 2015, 57, 43-47.	2.3	61
187	A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance: NaTi ₂ (PO ₄) ₃ as an example. Nanoscale, 2015, 7, 14723-14729.	2.8	61
188	Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-ion Batteries. Electrochimica Acta, 2015, 152, 178-186.	2.6	61
189	Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage. Advanced Functional Materials, 2018, 28, 1707179.	7.8	61
190	MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Research, 2018, 11, 3844-3853.	5.8	61
191	Highly reversible lithium storage in Si (core)–hollow carbon nanofibers (sheath) nanocomposites. Nanoscale, 2013, 5, 2647.	2.8	60
192	Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries. Journal of Power Sources, 2014, 266, 323-331.	4.0	60
193	Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms. Nano Energy, 2020, 73, 104807.	8.2	60
194	Sub-nanometric Manganous Oxide Clusters in Nitrogen Doped Mesoporous Carbon Nanosheets for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 700-708.	4.5	60
195	Flexible copper-stabilized sulfur–carbon nanofibers with excellent electrochemical performance for Li–S batteries. Nanoscale, 2015, 7, 10940-10949.	2.8	58
196	Amorphous Red Phosphorus Embedded in Sandwiched Porous Carbon Enabling Superior Sodium Storage Performances. Small, 2018, 14, e1703472.	5.2	58
197	Boosting the Electrochemical Performance of Li–S Batteries with a Dual Polysulfides Confinement Strategy. Small, 2018, 14, e1802516.	5.2	58
198	How Half-Coated Janus Particles Enter Cells. Journal of the American Chemical Society, 2013, 135, 19091-19094.	6.6	57

#	Article	IF	CITATIONS
199	Remote Control of T Cell Activation Using Magnetic Janus Particles. Angewandte Chemie - International Edition, 2016, 55, 7384-7387.	7.2	57
200	Na ₃ V ₂ (PO ₄) ₃ coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries. Nanoscale, 2017, 9, 10880-10885.	2.8	57
201	Nanoparticle-Assisted Surface Immobilization of Phospholipid Liposomes. Journal of the American Chemical Society, 2006, 128, 9026-9027.	6.6	56
202	Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale, 2014, 6, 7817.	2.8	54
203	Toward High Powerâ€High Energy Sodium Cathodes: A Case Study of Bicontinuous Ordered Network of 3D Porous Na ₃ (VO) ₂ (PO ₄) ₂ F/rGO with Pseudocapacitance Effect. Small, 2019, 15, e1900356.	5.2	54
204	Carbonâ€based materials for allâ€solidâ€state zinc–air batteries. , 2021, 3, 50-65.		54
205	Cationic Nanoparticles Stabilize Zwitterionic Liposomes Better than Anionic Ones. Journal of Physical Chemistry C, 2007, 111, 8233-8236.	1.5	53
206	A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries. Chemical Engineering Journal, 2012, 192, 226-231.	6.6	53
207	N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. RSC Advances, 2014, 4, 16920-16927.	1.7	53
208	Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances >90% and sheet resistances <10 ohm/sq. Journal of Colloid and Interface Science, 2018, 512, 208-218.	5.0	53
209	Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries. ACS Nano, 2020, 14, 10438-10451.	7.3	53
210	MoS ₂ –graphene nanosheet–CNT hybrids with excellent electrochemical performances for lithium-ion batteries. RSC Advances, 2015, 5, 77518-77526.	1.7	52
211	Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Research, 2017, 10, 4305-4317.	5.8	52
212	A spray-freezing approach to reduced graphene oxide/MoS2 hybrids for superior energy storage. Energy Storage Materials, 2018, 10, 282-290.	9.5	52
213	Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 9438-9445.	5.2	51
214	Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 32360-32365.	4.0	50
215	Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. Energy Storage Materials, 2018, 10, 122-129.	9.5	50
216	Natural Vermiculite Enables Highâ€Performance in Lithium–Sulfur Batteries via Electrical Double Layer Effects. Advanced Functional Materials, 2019, 29, 1902820.	7.8	50

#	Article	IF	CITATIONS
217	Facile synthesis of flower-like and yarn-like α-Fe2O3 spherical clusters as anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 93, 131-136.	2.6	49
218	Janus Particles as Artificial Antigen-Presenting Cells for T Cell Activation. ACS Applied Materials & Interfaces, 2014, 6, 18435-18439.	4.0	48
219	Rapid and Up-Scalable Fabrication of Free-Standing Metal Oxide Nanosheets for High-Performance Lithium Storage. Small, 2015, 11, 2011-2018.	5.2	48
220	Selenium embedded in MOF-derived N-doped microporous carbon polyhedrons as a high performance cathode for sodium–selenium batteries. Materials Chemistry Frontiers, 2018, 2, 1574-1582.	3.2	48
221	Binding Nanosized Cobalt Chalcogenides in B,N odoped Graphene for Enhanced Sodium Storage. Small Methods, 2019, 3, 1800170.	4.6	48
222	Designed Nanoarchitectures by Electrostatic Spray Deposition for Energy Storage. Advanced Materials, 2019, 31, e1803408.	11.1	48
223	Binding Se into nitrogenâ€doped porous carbon nanosheets for highâ€performance potassium storage. InformaÄnÃ-Materiály, 2021, 3, 421-431.	8.5	48
224	Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles. ACS Nano, 2018, 12, 3646-3657.	7.3	47
225	Self-Supporting Hybrid Fiber Mats of Cu ₃ P–Co ₂ P/N–C Endowed with Enhanced Lithium/Sodium Ions Storage Performances. ACS Applied Materials & Interfaces, 2019, 11, 11442-11450.	4.0	47
226	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. Small Structures, 2020, 1, 2000053.	6.9	47
227	Nano-Li3V2(PO4)3 enwrapped into reduced graphene oxide sheets for lithium-ion batteries. Journal of Power Sources, 2014, 265, 104-109.	4.0	46
228	Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries. RSC Advances, 2015, 5, 55136-55142.	1.7	45
229	A multi-layered Ti3C2/Li2S composite as cathode material for advanced lithium-sulfur batteries. Journal of Energy Chemistry, 2019, 39, 176-181.	7.1	45
230	Integrating Conductivity, Captivity, and Immobility Ability into N/O Dualâ€Doped Porous Carbon Nanocage Anchored with CNT as an Effective Se Host for Advanced Kâ€Se Battery. Advanced Functional Materials, 2020, 30, 2003871.	7.8	45
231	Photopolymerized Gel Electrolyte with Unprecedented Roomâ€Temperature Ionic Conductivity for Highâ€Energyâ€Density Solidâ€State Sodium Metal Batteries. Advanced Energy Materials, 2021, 11, 2002930.	10.2	45
232	A Selfâ€Healing Volume Variation Threeâ€Dimensional Continuous Bulk Porous Bismuth for Ultrafast Sodium Storage. Advanced Functional Materials, 2021, 31, 2011264.	7.8	45
233	Na ₃ V ₂ (PO ₄) ₃ @nitrogen,sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries. Nanoscale, 2017, 9, 6048-6055.	2.8	44
234	Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. Energy Storage Materials, 2017, 9, 112-118.	9.5	44

#	Article	IF	CITATIONS
235	Manipulation of 2D carbon nanoplates with a core–shell structure for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19929-19938.	5.2	44
236	Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage. Electrochemistry Communications, 2013, 28, 54-57.	2.3	43
237	Selfâ€Formed Electronic/Ionic Conductive Fe ₃ S ₄ @ S @ 0.9Na ₃ SbS ₄ â<0.1Nal Composite Highâ€Performance Roomâ€Temperature Allâ€Solidâ€State Sodium–Sulfur Battery. Small, 2020, 16, e2001574		43
238	Boosting Potassium Storage by Integration Advantageous of Defect Engineering and Spatial Confinement: A Case Study of Sb ₂ Se ₃ . Small, 2020, 16, e2005272.	5.2	43
239	Research Progress on Copper-Based Current Collector for Lithium Metal Batteries. Energy & Fuels, 2021, 35, 12921-12937.	2.5	43
240	Some new facts on electrochemical reaction mechanism for transition metal oxide electrodes. Journal of Power Sources, 2009, 189, 552-556.	4.0	42
241	Carbon and Carbon Hybrid Materials as Anodes for Sodiumâ€lon Batteries. Chemistry - an Asian Journal, 2018, 13, 1248-1265.	1.7	42
242	A Doubleâ€Buffering Strategy to Boost the Lithium Storage of Botryoid MnO <i>_x</i> /C Anodes. Small, 2019, 15, e1900015.	5.2	42
243	Architectural Engineering Achieves Highâ€Performance Alloying Anodes for Lithium and Sodium Ion Batteries. Small, 2021, 17, e2005248.	5.2	42
244	An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Materials, 2021, 42, 145-153.	9.5	42
245	The Synergetic Effect of Lithium Bisoxalatodifluorophosphate and Fluoroethylene Carbonate on Dendrite Suppression for Fast Charging Lithium Metal Batteries. Small, 2020, 16, e2001989.	5.2	41
246	Expanding pore sizes of ZIF-8-derived nitrogen-doped microporous carbon <i>via</i> C ₆₀ embedding: toward improved anode performance for the lithium-ion battery. Nanoscale, 2018, 10, 2473-2480.	2.8	40
247	Advanced cathodes for potassium-ion battery. Current Opinion in Electrochemistry, 2019, 18, 24-30.	2.5	40
248	Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries. Electrochimica Acta, 2014, 132, 323-331.	2.6	39
249	Oneâ€Dimensional Na ₃ V ₂ (PO ₄) ₃ /C Nanowires as Cathode Materials for Longâ€Life and High Rate Naâ€lon Batteries. ChemNanoMat, 2016, 2, 726-731.	1.5	38
250	RuO ₂ Particles Anchored on Brush‣ike 3D Carbon Cloth Guide Homogenous Li/Na Nucleation Framework for Stable Li/Na Anode. Small, 2019, 15, e1903725.	5.2	38
251	3D porous V2O5 architectures for high-rate lithium storage. Journal of Energy Chemistry, 2020, 40, 15-21.	7.1	38
252	From 0D to 3D: Dimensional Control of Bismuth for Potassium Storage with Superb Kinetics and Cycling Stability. Advanced Energy Materials, 2021, 11, 2102263.	10.2	38

#	Article	lF	CITATIONS
253	Homogeneous Na Deposition Enabling Highâ€Energy Naâ€Metal Batteries. Advanced Functional Materials, 2022, 32, 2110280.	7.8	38
254	An Efficient Strategy toward Multichambered Carbon Nanoboxes with Multiple Spatial Confinement for Advanced Sodium–Sulfur Batteries. ACS Nano, 2021, 15, 20607-20618.	7.3	38
255	"Waltz―of Cell Membrane-Coated Nanoparticles on Lipid Bilayers: Tracking Single Particle Rotation in Ligand–Receptor Binding. ACS Nano, 2018, 12, 11871-11880.	7.3	37
256	Development and challenge of advanced nonaqueous sodium ion batteries. EnergyChem, 2020, 2, 100031.	10.1	37
257	A Highâ€Temperature Naâ€Ion Battery: Boosting the Rate Capability and Cycle Life by Structure Engineering. Small, 2020, 16, e1906669.	5.2	37
258	Mesoporous carbon nanosheet-assembled flowers towards superior potassium storage. Chinese Chemical Letters, 2021, 32, 1161-1164.	4.8	35
259	Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries. Scientific Reports, 2015, 5, 14146.	1.6	34
260	Janus nanoparticles for T cell activation: clustering ligands to enhance stimulation. Journal of Materials Chemistry B, 2017, 5, 4410-4415.	2.9	34
261	2D sandwich-like nanosheets of ultrafine Sb nanoparticles anchored to graphene for high-efficiency sodium storage. Nano Research, 2017, 10, 4360-4367.	5.8	34
262	Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Research, 2019, 12, 2211-2217.	5.8	34
263	Enhanced Pseudo-Capacitive Contributions to High-Performance Sodium Storage in TiO2/C Nanofibers via Double Effects of Sulfur Modification. Nano-Micro Letters, 2020, 12, 165.	14.4	34
264	Ostwald Ripening Tailoring Hierarchically Porous Na ₃ V ₂ (PO ₄) ₂ O ₂ F Hollow Nanospheres for Superior Highâ€Rate and Ultrastable Sodium Ion Storage. Small, 2020, 16, e2004925.	5.2	34
265	Lithium Potential Variations for Metastable Materials: Case Study of Nanocrystalline and Amorphous LiFePO ₄ . Nano Letters, 2014, 14, 5342-5349.	4.5	33
266	Boosting potassium storage performance via construction of NbSe2–based misfit layered chalcogenides. Energy Storage Materials, 2021, 39, 265-270.	9.5	33
267	Synthesis and electrochemical properties of high performance yolk-structured LiMn ₂ O ₄ microspheres for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 860-867.	5.2	32
268	High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of Ⱂ40ºC. Nano Energy, 2021, 82, 105688.	8.2	32
269	Macrophage Uptake of Janus Particles Depends upon Janus Balance. Langmuir, 2015, 31, 2833-2838.	1.6	31
270	Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithium-ion batteries. Journal of Power Sources, 2015, 293, 976-982.	4.0	31

#	Article	IF	CITATIONS
271	Interrogating Cellular Functions with Designer Janus Particles. Chemistry of Materials, 2017, 29, 1448-1460.	3.2	31
272	Facile synthesis of porous germanium-iron bimetal oxide nanowires as anode materials for lithium-ion batteries. Nano Research, 2018, 11, 3702-3709.	5.8	31
273	Efficient Stress Dissipation in Wellâ€Aligned Pyramidal SbSn Alloy Nanoarrays for Robust Sodium Storage. Advanced Functional Materials, 2021, 31, 2104798.	7.8	31
274	Roomâ€Temperature Sodium–Sulfur Batteries: Rules for Catalyst Selection and Electrode Design. Advanced Materials, 2022, 34, .	11.1	31
275	A novel hybrid artificial photosynthesis system using MoS2 embedded in carbon nanofibers as electron relay and hydrogen evolution catalyst. Journal of Catalysis, 2017, 352, 35-41.	3.1	30
276	Selfâ€Assembled VS ₄ Hierarchitectures with Enhanced Capacity and Stability for Sodium Storage. Energy and Environmental Materials, 2022, 5, 592-598.	7.3	30
277	Facile Electrochemical Synthesis of Single-Crystalline Copper Nanospheres, Pyramids, and Truncated Pyramidal Nanoparticles from Lithia/Cuprous Oxide Composite Thin Films. Journal of Physical Chemistry C, 2008, 112, 4176-4179.	1.5	29
278	Stressâ€Relieved Nanowires by Silicon Substitution for Highâ€Capacity and Stable Lithium Storage. Advanced Energy Materials, 2018, 8, 1702805.	10.2	29
279	Toward True Lithium-Air Batteries. Joule, 2018, 2, 815-817.	11.7	29
280	Large-scale low temperature fabrication of SnO ₂ hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage. Nanoscale, 2014, 6, 11411-11418.	2.8	28
281	Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing. Nano Research, 2018, 11, 2256-2264.	5.8	28
282	A new high-capacity and safe energy storage system: lithium-ion sulfur batteries. Nanoscale, 2019, 11, 19140-19157.	2.8	28
283	Status and Challenges of Cathode Materials for Roomâ€Temperature Sodium–Sulfur Batteries. Small Science, 2021, 1, 2100059.	5.8	28
284	Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 18711-18716.	5.2	27
285	Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance. Journal of Materials Chemistry A, 2019, 7, 8581-8588.	5.2	27
286	Gallium-based anodes for alkali metal ion batteries. Journal of Energy Chemistry, 2021, 55, 557-571.	7.1	27
287	Rapid internal conversion harvested in Co/Mo dichalcogenides hollow nanocages of polysulfides for stable Lithium-Sulfur batteries. Chemical Engineering Journal, 2022, 434, 134498.	6.6	27
288	Jarosite Nanosheets Fabricated via Room-Temperature Synthesis as Cathode Materials for High-Rate Lithium Ion Batteries. Chemistry of Materials, 2015, 27, 3143-3149.	3.2	26

#	Article	IF	CITATIONS
289	Octahedral Pd nanocages with porous shells converted from Co(OH) ₂ nanocages with nanosheet surfaces as robust electrocatalysts for ethanol oxidation. Journal of Materials Chemistry A, 2018, 6, 15789-15796.	5.2	26
290	Precisely Tunable Engineering of Sub-30 nm Monodisperse Oligonucleotide Nanoparticles. Journal of the American Chemical Society, 2014, 136, 234-240.	6.6	25
291	Anchoring Nitrogenâ€Doped TiO ₂ Nanocrystals on Nitrogenâ€Doped 3D Graphene Frameworks for Enhanced Lithium Storage. Chemistry - A European Journal, 2017, 23, 1757-1762.	1.7	25
292	Transformation of Polyoxometalate into 3D Porous Liâ€Containing Oxide: A Case Study of γâ€LiV ₂ O ₅ for Highâ€Performance Cathodes of Liâ€Ion Batteries. Small Methods, 2019, 3, 1900187.	4.6	25
293	Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers. RSC Advances, 2014, 4, 25220.	1.7	24
294	Three-Dimensionally Interconnected TaS ₃ Nanowire Network as Anode for High-Performance Flexible Li-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 5629-5633.	4.0	24
295	Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive. Rare Metals, 2021, 40, 433-439.	3.6	24
296	Layer-by-Layer Assembly of CeO _{2–<i>x</i>} @C-rGO Nanocomposites and CNTs as a Multifunctional Separator Coating for Highly Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 18634-18645.	4.0	24
297	General Strategy for Fabricating Sandwich-like Graphene-Based Hybrid Films for Highly Reversible Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 18320-18326.	4.0	23
298	Simultaneous Nanoscale Imaging of Chemical and Architectural Heterogeneity on Yeast Cell Wall Particles. Langmuir, 2020, 36, 6169-6177.	1.6	23
299	Facile synthesis of germanium–reduced graphene oxide composite as anode for high performance lithium-ion batteries. RSC Advances, 2014, 4, 58184-58189.	1.7	22
300	Tracking single-particle rotation during macrophage uptake. Soft Matter, 2015, 11, 5346-5352.	1.2	22
301	Improvement of Lithium Storage Performance of Molybdenum Trioxide by a Synergistic Effect of Surface Coating and Oxygen Vacancies. Advanced Materials Interfaces, 2016, 3, 1600730.	1.9	22
302	A Novel Protective Strategy on Highâ€Voltage LiCoO ₂ Cathode for Fast Charging Applications: Li _{1.6} Mg _{1.6} Sn _{2.8} O ₈ Double Layer Structure via SnO ₂ Surface Modification. Small Methods, 2019, 3, 1900355.	4.6	22
303	Size-Based Chromatography of Signaling Clusters in a Living Cell Membrane. Nano Letters, 2014, 14, 2293-2298.	4.5	21
304	Tracking single particle rotation: probing dynamics in four dimensions. Analytical Methods, 2015, 7, 7020-7028.	1.3	21
305	Advances in K-Q (Q = S, Se and Se S) batteries. Materials Today, 2020, 39, 9-22.	8.3	21
306	Bifunctional Catalyst for Liquid–Solid Redox Conversion in Roomâ€Temperature Sodium–Sulfur Batteries. Small Structures, 2022, 3, .	6.9	21

#	Article	IF	CITATIONS
307	Direct Imaging of Lithium Ions Using Aberration-Corrected Annular-Bright-Field Scanning Transmission Electron Microscopy and Associated Contrast Mechanisms. Materials Express, 2011, 1, 43-50.	0.2	20
308	Direct evidence of a conversion mechanism in a NiSnO ₃ anode for lithium ion battery application. RSC Advances, 2014, 4, 36301-36306.	1.7	20
309	Cargos Rotate at Microtubule Intersections during Intracellular Trafficking. Biophysical Journal, 2018, 114, 2900-2909.	0.2	20
310	Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25106-25114.	3.3	20
311	Wellâ€Defined Cu ₂ O/Cu ₃ (BTC) ₂ Sponge Architecture as Efficient Phenolics Scavenger: Synchronous Etching and Reduction of MOFs in confinedâ€pH NH ₃ â <h<sub>20. Small, 2019, 15, e1805478.</h<sub>	5.2	19
312	Safety of Sodiumâ€ion Batteries: Highâ€Safety Nonaqueous Electrolytes and Interphases for Sodiumâ€ion Batteries (Small 14/2019). Small, 2019, 15, 1970072.	5.2	19
313	Facile synthesis of micrometer Li1.05Mn1.95O4 and its low temperature performance for high power lithium ion batteries. Electrochimica Acta, 2012, 81, 191-196.	2.6	18
314	Tracking Single Molecules in Biomembranes: Is Seeing Always Believing?. ACS Nano, 2019, 13, 10860-10868.	7.3	18
315	Highly reversible lithium storage in a 3D macroporous Ge@C composite. RSC Advances, 2014, 4, 37746-37751.	1.7	17
316	Free-standing vanadium pentoxide nanoribbon film as a high-performance cathode for rechargeable sodium batteries. Chinese Chemical Letters, 2017, 28, 2251-2253.	4.8	17
317	FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries. Science China Chemistry, 2018, 61, 1151-1158.	4.2	17
318	Constructing a 3D interconnected Fe@graphitic carbon structure for a highly efficient microwave absorber. Journal of Materials Chemistry C, 2020, 8, 1326-1334.	2.7	17
319	Liquid-Phase Peak Force Infrared Microscopy for Chemical Nanoimaging and Spectroscopy. Analytical Chemistry, 2021, 93, 3567-3575.	3.2	17
320	Incorporating Cobalt Nanoparticles in Nitrogen-Doped Mesoporous Carbon Spheres through Composite Micelle Assembly for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38604-38612.	4.0	17
321	3D Tungsten Disulfide/Carbon Nanotube Networks as Separator Coatings and Cathode Additives for Stable and Fast Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45547-45557.	4.0	17
322	Structure Engineering of Vanadium Tetrasulfides for Highâ€Capacity and Highâ€Rate Sodium Storage. Small, 2022, 18, e2107058.	5.2	17
323	How Liposomes Diffuse in Concentrated Liposome Suspensions. Journal of Physical Chemistry B, 2011, 115, 2748-2753.	1.2	16
324	Electrostatic spray deposition of nanoporous CoO/Co composite thin films as anode materials for lithium-ion batteries. Applied Surface Science, 2012, 259, 769-773.	3.1	16

#	Article	IF	CITATIONS
325	One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Electrochimica Acta, 2014, 133, 515-521.	2.6	16
326	Boosting Sodium Storage in TiF ₃ /Carbon Core/Sheath Nanofibers through an Efficient Mixedâ€Conducting Network. Advanced Energy Materials, 2019, 9, 1901470.	10.2	16
327	Lipid bilayer disruption induced by amphiphilic Janus nanoparticles: the non-monotonic effect of charged lipids. Soft Matter, 2019, 15, 2373-2380.	1.2	16
328	Fluorine-induced dual defects in NiP2 anode with robust sodium storage performance. Nano Research, 2022, 15, 2147-2156.	5.8	16
329	<i>In Situ</i> Secondary Phase Modified Low-Strain Na ₃ Ti(PO ₃) ₃ N Cathode Achieving Fast Kinetics and Ultralong Cycle Life. ACS Energy Letters, 2022, 7, 632-639.	8.8	16
330	Nanosheets of Earth-Abundant Jarosite as Novel Anodes for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 10518-10524.	4.0	15
331	Synthesis of electrocatalytically functional carbon honeycombs through cooking with molecule precursors. International Journal of Hydrogen Energy, 2017, 42, 6472-6481.	3.8	15
332	Lipid Bilayer Disruption by Amphiphilic Janus Nanoparticles: The Role of Janus Balance. Langmuir, 2018, 34, 12387-12393.	1.6	15
333	Octahedral Cu ₂ 0@Co(OH) ₂ Nanocages with Hierarchical Flakeâ€Like Walls and Yolkâ€Shell Structures for Enhanced Electrocatalytic Activity. ChemCatChem, 2019, 11, 2520-2525.	1.8	15
334	Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles. Nanoscale, 2020, 12, 20326-20336.	2.8	15
335	Macrophage activation on "phagocytic synapse―arrays: Spacing of nanoclustered ligands directs TLR1/2 signaling with an intrinsic limit. Science Advances, 2020, 6, .	4.7	15
336	Innate immune receptor clustering and its role in immune regulation. Journal of Cell Science, 2021, 134, .	1.2	15
337	Synergetic enhancement of sodium storage in gallium-based heterostructures. Nano Energy, 2021, 89, 106395.	8.2	15
338	Solution-processed multifunctional transparent conductive films based on long silver nanowires/polyimide structure with highly thermostable and antibacterial properties. RSC Advances, 2017, 7, 28670-28676.	1.7	15
339	Spontaneous immortalization of mouse liver sinusoidal endothelial cells. International Journal of Molecular Medicine, 2015, 35, 617-624.	1.8	14
340	Superior potassium and zinc storage in K-doped VO ₂ (B) spheres. Materials Chemistry Frontiers, 2021, 5, 3132-3138.	3.2	14
341	Biomimetic N-doped sea-urchin-structured porous carbon for the anode material of high-energy-density potassium-ion batteries. Electrochimica Acta, 2021, 388, 138565.	2.6	14
342	Sequential Assembly Tailored Interior of Porous Carbon Spheres for Boosted Water Decontamination through Peroxymonosulfate Activation. Advanced Functional Materials, 2022, 32, .	7.8	14

#	Article	IF	CITATIONS
343	Greener and cheaper. Nature Energy, 2017, 2, 836-837.	19.8	13
344	Reduced graphene oxide wrapped hollow molybdenum trioxide nanorod for high performance lithium-ion batteries. Chinese Chemical Letters, 2017, 28, 2231-2234.	4.8	13
345	Single-Janus Rod Tracking Reveals the "Rock-and-Roll―of Endosomes in Living Cells. Langmuir, 2018, 34, 1151-1158.	1.6	13
346	Morphology ontrolled Fabrication of SnO ₂ /ZnO Nanocomposites with Enhanced Photocatalytic Performance. Photochemistry and Photobiology, 2019, 95, 1131-1141.	1.3	13
347	Constructing Co ₃ O ₄ Nanowires on Carbon Fiber Film as a Lithiophilic Host for Stable Lithium Metal Anodes. Chemistry - an Asian Journal, 2020, 15, 1057-1066.	1.7	13
348	Quantitative Coassembly for Precise Synthesis of Mesoporous Nanospheres with Pore Structureâ€Đependent Catalytic Performance. Advanced Materials, 2021, 33, e2103130.	11.1	13
349	Porous SnO ₂ /CNT composite anodes: Influence of composition and deposition temperature on the electrochemical performance. Journal of Materials Research, 2010, 25, 1554-1560.	1.2	12
350	Thermodynamics and liquid phase separation in the Cu–Co–Nb ternary alloys. Journal of Materials Research, 2010, 25, 1706-1717.	1.2	12
351	Cathodes with intrinsic redox overcharge protection: A new strategy towards safer Li-ion batteries. Journal of Power Sources, 2014, 264, 155-160.	4.0	12
352	Doping the Li ₄ Ti ₅ O ₁₂ lattice with extra-large anions. Materials Express, 2015, 5, 457-462.	0.2	12
353	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€ S torage Performance. Angewandte Chemie, 2019, 131, 7316-7321.	1.6	12
354	Vanadate-based electrodes for rechargeable batteries. Materials Chemistry Frontiers, 2021, 5, 1585-1609.	3.2	12
355	Biomolecular Science of Liposome-Nanoparticle Constructs. Molecular Crystals and Liquid Crystals, 2009, 507, 18-25.	0.4	11
356	Calcium ion-assisted lipid tubule formation. Materials Chemistry Frontiers, 2018, 2, 603-608.	3.2	11
357	Engineering of Crosslinked Network and Functional Interlayer to Boost Cathode Performance of Tannin for Potassium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	11
358	Effect of Lithia and Substrate on the Electrochemical Performance of a Lithia/Cobalt Oxide Composite Thin-Film Anode. Chemistry - an Asian Journal, 2006, 1, 826-831.	1.7	10
359	Electrostatic Spray Assembly of Nanostructured La[sub 0.7]Ca[sub 0.3]CrO[sub 3â^'Î] Films. Journal of the Electrochemical Society, 2007, 154, E107.	1.3	10
360	PCB Association with Model Phospholipid Bilayers. Environmental Science & Technology, 2008, 42, 7496-7501.	4.6	10

#	Article	IF	CITATIONS
361	Seeing the unseen: Imaging rotation in cells with designer anisotropic particles. Micron, 2017, 101, 123-131.	1.1	10
362	Realâ€Time Simultaneous Imaging of Acidification and Proteolysis in Single Phagosomes Using Bifunctional Janusâ€Particle Probes. Angewandte Chemie - International Edition, 2021, 60, 26734-26739.	7.2	10
363	Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive. Nano Research, 2023, 16, 3823-3831.	5.8	10
364	Walnut-like vanadium oxide film with high rate performance as a cathode material for rechargeable lithium batteries. Journal of Power Sources, 2013, 228, 7-13.	4.0	9
365	Free-standing Ag/C coaxial hybrid electrodes as anodes for Li-ion batteries. Nanoscale, 2013, 5, 11568.	2.8	9
366	Remote Control of T Cell Activation Using Magnetic Janus Particles. Angewandte Chemie, 2016, 128, 7510-7513.	1.6	9
367	Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries. Nanoscale, 2018, 10, 12430-12435.	2.8	9
368	Hybrid Cathodes Composed of K3V2(PO4)3 and Carbon Materials with Boosted Charge Transfer for K-Ion Batteries. Surfaces, 2020, 3, 1-10.	1.0	9
369	A sodiophilic VN interlayer stabilizing a Na metal anode. Nanoscale Horizons, 2022, 7, 899-907.	4.1	9
370	3-Trimethylsilyl-2-oxazolidinone, as a multifunctional additive to stabilize FEC-containing electrolyte for sodium metal batteries. Electrochimica Acta, 2022, 425, 140746.	2.6	9
371	Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO ₂ Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries (Small 26/2016). Small, 2016, 12, 3474-3474.	5.2	8
372	Influence of Carbon Matrix Dimensions on the Electrochemical Performance of Germanium Oxide in Lithiumâ€ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 524-530.	1.2	8
373	Lithium–Sulfur Batteries: Self‧upported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for Highâ€Energyâ€Density Lithium–Sulfur Batteries (Adv. Mater. 33/2019). Advanced Materials, 2019, 31, 1970236.	11.1	8
374	VOPO4â‹2H2O Nanosheet Cathode for Enhanced Sodium Storage. Frontiers in Energy Research, 2020, 8, .	1.2	8
375	Sodiumâ€lon Batteries: High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network (Adv. Mater. 12/2016). Advanced Materials, 2016, 28, 2408-2408.	11.1	7
376	Lipid membrane-assisted condensation and assembly of amphiphilic Janus particles. Soft Matter, 2016, 12, 9151-9157.	1.2	7
377	Virtual Special Issue of Recent Research Advances in China: Batteries and Energy Storage. Energy & Fuels, 2021, 35, 10945-10948.	2.5	7
378	Lithium–Sulfur Batteries: Facile Solid‧tate Growth of 3D Wellâ€Interconnected Nitrogenâ€Rich Carbon Nanotube–Graphene Hybrid Architectures for Lithium–Sulfur Batteries (Adv. Funct. Mater. 7/2016). Advanced Functional Materials, 2016, 26, 1144-1144.	7.8	6

#	Article	IF	CITATIONS
379	Component ustomizable Porous Rare arthâ€Based Colloidal Spheres towards Highly Effective Catalysts and Bioimaging Applications. Chemistry - A European Journal, 2017, 23, 16242-16248.	1.7	6
380	Postâ€lithium battery materials and technology. EcoMat, 2020, 2, e12048.	6.8	6
381	Recent Progress on Modification Strategies of Alloy-based Anode Materials for Alkali-ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 200-209.	1.3	6
382	Twoâ€Dimensional Boron and Nitrogen Dualâ€Doped Graphitic Carbon as an Efficient Metalâ€Free Cathodic Electrocatalyst for Lithiumâ€Air Batteries. ChemElectroChem, 2021, 8, 949-956.	1.7	5
383	Introducing Metal–Organic Nanotubes to Derive Highâ€Density Bimetal Alloy Nanoparticles Supported on Nanorods for Lithium–Oxygen Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	5
384	Dual-Color Peak Force Infrared Microscopy. Analytical Chemistry, 2022, 94, 1425-1431.	3.2	5
385	Chiral zero energy modes in two-dimensional disordered Dirac semimetals. Physical Review B, 2018, 97,	1.1	4
386	Spatial organization of Fcl ³ R and TLR2/1 on phagosome membranes differentially regulates their synergistic and inhibitory receptor crosstalk. Scientific Reports, 2021, 11, 13430.	1.6	4
387	Anisotropic presentation of ligands on cargos modulates degradative function of phagosomes. Biophysical Reports, 2022, 2, 100041.	0.7	4
388	Chebyshev polynomial method to Landauer–Büttiker formula of quantum transport in nanostructures. AIP Advances, 2020, 10, .	0.6	3
389	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. Small Structures, 2020, 1, 2070003.	6.9	3
390	Single-phagosome imaging reveals that homotypic fusion impairs phagosome degradative function. Biophysical Journal, 2022, 121, 459-469.	0.2	3
391	Immobile ligands enhance FcγR-TLR2/1 crosstalk by promoting interface overlap of receptor clusters. Biophysical Journal, 2022, 121, 966-976.	0.2	3
392	Lithium Storage: Generalizable Synthesis of Metal‧ulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage (Adv. Mater. 1/2016). Advanced Materials, 2016, 28, 2-2.	11.1	2
393	Editorial for rare metals, special issue on solid state batteries. Rare Metals, 2018, 37, 447-448.	3.6	2
394	Metal Fluoride–Lithium Batteries: 3D Honeycomb Architecture Enables a Highâ€Rate and Longâ€Life Iron (III) Fluoride–Lithium Battery (Adv. Mater. 43/2019). Advanced Materials, 2019, 31, 1970304.	11.1	2
395	Sodiumâ€lon Batteries: Ostwald Ripening Tailoring Hierarchically Porous Na ₃ V ₂ (PO ₄) ₂ O ₂ F Hollow Nanospheres for Superior Highâ€Rate and Ultrastable Sodium Ion Storage (Small 48/2020). Small, 2020, 16, 2070263.	5.2	2
396	Sodium Ion Batteries: Toward High Energy Density All Solid‣tate Sodium Batteries with Excellent Flexibility (Adv. Energy Mater. 12/2020). Advanced Energy Materials, 2020, 10, 2070055.	10.2	2

#	Article	IF	CITATIONS
397	Fast and Reversible Na Intercalation in Nsutiteâ€Type VO 2 Hierarchitectures. Advanced Materials Interfaces, 2021, 8, 2100191.	1.9	2
398	Individual development plans — experiences made in graduate student training. Analytical and Bioanalytical Chemistry, 2021, 413, 5681-5684.	1.9	2
399	Cu–V bimetallic selenide with synergistic effect for high-rate and long-life sodium storage. Journal of Materials Research, 2022, 37, 3308-3317.	1.2	2
400	Metal Sulphides: A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries (Adv. Sci. 12/2015). Advanced Science, 2015, 2, .	5.6	1
401	Energy Storage: Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture (Adv. Mater. 9/2017). Advanced Materials, 2017, 29, .	11.1	1
402	Half Pegylated Particles Evade Macrophages as Effectively as Fully Pegylated ones. Biophysical Journal, 2017, 112, 303a.	0.2	1
403	Carbon Nanowires: Peapodâ€like Li ₃ VO ₄ /Nâ€Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for Highâ€Energy Lithiumâ€lon Capacitors (Adv. Mater.) Tj E	TQ q1.11 0.	78 4 314 rgBT
404	Potassiumâ€ion Batteries: The Promise and Challenge of Phosphorusâ€Based Composites as Anode Materials for Potassiumâ€ion Batteries (Adv. Mater. 50/2019). Advanced Materials, 2019, 31, 1970354.	11.1	1
405	Metal Chalcogenides: Metal Chalcogenides: Paving the Way for Highâ€Performance Sodium/Potassiumâ€Ion Batteries (Small Methods 1/2020). Small Methods, 2020, 4, 2070002.	4.6	1
406	NASICON Electrodes: A Lowâ€Temperature Sodiumâ€Ion Full Battery: Superb Kinetics and Cycling Stability (Adv. Funct. Mater. 11/2021). Advanced Functional Materials, 2021, 31, 2170070.	7.8	1
407	Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2 Cathode with SnO2 Modification. Chemical Research in Chinese Universities, 2021, 37, 1130.	1.3	1
408	Hierarchically Macroporous and Mesoporous Sponge-Like Fe ₃ O ₄ Thin Film Electrodes for Application in Li-Ion Batteries. Nanoscience and Nanotechnology Letters, 2012, 4, 983-988.	0.4	1
409	Deficient precipitation sensitivity to Sahel land surface forcings among <scp>CMIP5</scp> models. International Journal of Climatology, 2023, 43, 99-122.	1.5	1
410	Nickel-Foam-Supported Reticilar CoO—Li2O Composite Anode Materials for Lithium Ion Batteries ChemInform, 2006, 37, no.	0.1	0
411	Response to Comment on "PCB Association with Model Phospholipid Bilayers― Environmental Science & Technology, 2009, 43, 5157-5157.	4.6	0
412	Anodes: Grapheneâ€Protected 3D Sbâ€based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage (Small 45/2015). Small, 2015, 11, 5978-5978.	5.2	0
413	Cyclability: Snâ€Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for Highâ€Rate and Long Life Liâ€Ion Batteries (Adv. Funct. Mater. 23/2015). Advanced Functional Materials, 2015, 25, 3446-3446.	7.8	0
414	Sodium-Ion Batteries: Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage (Small 40/2015). Small, 2015, 11, 5330-5330.	5.2	0

#	Article	IF	CITATIONS
415	How Half-Coated Janus Particles Enter Cells. Biophysical Journal, 2015, 108, 100a.	0.2	0
416	Nanosheets: Rapid and Up-Scalable Fabrication of Free-Standing Metal Oxide Nanosheets for High-Performance Lithium Storage (Small 17/2015). Small, 2015, 11, 2100-2100.	5.2	0
417	Spatiotemporal Control of T Cell Stimulation using Janus Particles. Biophysical Journal, 2016, 110, 652a.	0.2	0
418	Tracking Single-Particle Rotation during Macrophage Uptake. Biophysical Journal, 2016, 110, 530a.	0.2	0
419	Reporting Rotational Dynamics of Intracellular Cargos with Janus Particles. Biophysical Journal, 2017, 112, 272a.	0.2	0
420	Frontispiz: Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ \in Storage Performance. Angewandte Chemie, 2019, 131, .	1.6	0
421	Frontispiece: Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodium‣torage Performance. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
422	Energy Spotlight. ACS Energy Letters, 2021, 6, 710-712.	8.8	0
423	Front Cover Image. InformaÄnÃ-Materiály, 2021, 3, .	8.5	0
424	Realâ€ŧime Simultaneous Imaging of Acidification and Proteolysis in Single Phagosomes Using Bifunctional Janus Particle Probes. Angewandte Chemie, 2021, 133, 26938.	1.6	0
425	Detection of Janus Au-SiO2 Nanoparticles with a Photothermal Technique. , 2017, , .		0
426	Janus Particles for Biomedical Applications. , 2017, , 405-449.		0
427	Energy Spotlight. ACS Energy Letters, 2022, 7, 1125-1127.	8.8	0