Filippo Martinelli-Boneschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7159687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
2	Genomewide Association Study of Severe Covid-19 with Respiratory Failure. New England Journal of Medicine, 2020, 383, 1522-1534.	27.0	1,548
3	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
4	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
5	Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nature Genetics, 2002, 30, 335-341.	21.4	555
6	Diseaseâ€Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis. Annals of Neurology, 2021, 89, 780-789.	5.3	370
7	De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nature Genetics, 2012, 44, 1030-1034.	21.4	345
8	Genomeâ€wide metaâ€analysis identifies novel multiple sclerosis susceptibility loci. Annals of Neurology, 2011, 70, 897-912.	5.3	314
9	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	21.4	312
10	Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.	6.2	164
11	Fatigue in Multiple Sclerosis Is Associated with Abnormal Cortical Activation to Voluntary Movement—EEG Evidence. NeuroImage, 2001, 13, 1186-1192.	4.2	136
12	MRI and motor evoked potential findings in nondisabled multiple sclerosis patients with and without symptoms of fatique. Journal of Neurology, 2000, 247, 506-509.	3.6	122
13	Vascular endothelial growth factor gene variability is associated with increased risk for AD. Annals of Neurology, 2005, 57, 373-380.	5.3	115
14	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
15	Ceramide levels are inversely associated with malignant progression of human glial tumors. Clia, 2002, 39, 105-113.	4.9	112
16	Functional network connectivity abnormalities in multiple sclerosis: Correlations with disability and cognitive impairment. Multiple Sclerosis Journal, 2018, 24, 459-471.	3.0	105
17	Retrospective study of a large population of patients with asymptomatic or minimally symptomatic raised serum creatine kinase levels. Journal of Neurology, 2002, 249, 305-311.	3.6	100
18	Evaluation of Polyneuropathy Markers in Type 1 Diabetic Kidney Transplant Patients and Effects of Islet Transplantation. Diabetes Care, 2007, 30, 3063-3069.	8.6	98

#	Article	IF	CITATIONS
19	Lifetime and actual prevalence of pain and headache in multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 514-521.	3.0	97
20	MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neuroscience Letters, 2012, 508, 4-8.	2.1	95
21	NLRP3 inflammasome is associated with the response to IFN-β in patients with multiple sclerosis. Brain, 2015, 138, 644-652.	7.6	93
22	The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. Journal of Neuroimmunology, 2013, 260, 99-106.	2.3	88
23	DMTs and Covidâ€19 severity in MS: a pooled analysis from Italy and France. Annals of Clinical and Translational Neurology, 2021, 8, 1738-1744.	3.7	86
24	Next Generation Sequencing of Pooled Samples: Guideline for Variants' Filtering. Scientific Reports, 2016, 6, 33735.	3.3	81
25	A pilot trial of low-dose naltrexone in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 1076-1083.	3.0	77
26	Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurology: Genetics, 2016, 2, e87.	1.9	76
27	Interleukin-1B polymorphism is associated with age at onset of Alzheimer's disease. Neurobiology of Aging, 2003, 24, 927-931.	3.1	75
28	Mitoxantrone for multiple sclerosis. The Cochrane Library, 2013, , CD002127.	2.8	75
29	Effects of glatiramer acetate on relapse rate and accumulated disability in multiple sclerosis: meta-analysis of three double-blind, randomized, placebo-controlled clinical trials. Multiple Sclerosis Journal, 2003, 9, 349-355.	3.0	72
30	MGAT5 alters the severity of multiple sclerosis. Journal of Neuroimmunology, 2010, 220, 120-124.	2.3	72
31	Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene, 2015, 34, 2094-2102.	5.9	72
32	IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes and Immunity, 2010, 11, 397-405.	4.1	70
33	Surgery for intracranial meningiomas in the elderly: a clinical—radiological grading system as a predictor of outcome. Journal of Neurosurgery, 2005, 102, 290-294.	1.6	69
34	Prostaglandin D2 synthase/GPR44: a signaling axis in PNS myelination. Nature Neuroscience, 2014, 17, 1682-1692.	14.8	66
35	Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2019, 18, 155-164.	10.2	63
36	Cerebral grey matter pathology and fatigue in patients with multiple sclerosis: a preliminary study. Journal of the Neurological Sciences, 2002, 194, 71-74.	0.6	60

#	Article	IF	CITATIONS
37	Mitochondrial DNA sequence variation in multiple sclerosis. Neurology, 2015, 85, 325-330.	1.1	60
38	Four New Families with Autosomal Dominant Partial Epilepsy with Auditory Features: Clinical Description and Linkage to Chromosome 10q24. Epilepsia, 2002, 43, 60-67.	5.1	59
39	Forceps minor damage and co-occurrence of depression and fatigue in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1633-1640.	3.0	59
40	An APOE Haplotype Associated with Decreased ε4 Expression Increases the Risk of Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 235-245.	2.6	58
41	Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification. European Journal of Human Genetics, 2013, 21, 911-917.	2.8	58
42	Role of <i>hnRNP-A1</i> and miR-590-3p in Neuronal Death: Genetics and Expression Analysis in Patients with Alzheimer Disease and Frontotemporal Lobar Degeneration. Rejuvenation Research, 2011, 14, 275-281.	1.8	57
43	A genome-wide association study in progressive multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 1384-1394.	3.0	57
44	Immunoproteasome LMP2 60HH Variant Alters MBP Epitope Generation and Reduces the Risk to Develop Multiple Sclerosis in Italian Female Population. PLoS ONE, 2010, 5, e9287.	2.5	56
45	ls M129V of PRNP gene associated with Alzheimer's disease? A case-control study and a meta-analysis. Neurobiology of Aging, 2006, 27, 770.e1-770.e5.	3.1	54
46	Genetic variants are major determinants of CSF antibody levels in multiple sclerosis. Brain, 2015, 138, 632-643.	7.6	54
47	HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood, 2016, 127, 1987-1997.	1.4	52
48	Sleep breathing disorders in 40 Italian patients with Myotonic dystrophy type 1. Neuromuscular Disorders, 2012, 22, 219-224.	0.6	51
49	DDIT4/REDD1/RTP801 Is a Novel Negative Regulator of Schwann Cell Myelination. Journal of Neuroscience, 2013, 33, 15295-15305.	3.6	51
50	Long-Term Coronavirus Disease 2019 Complications in Inpatients and Outpatients: A One-Year Follow-up Cohort Study. Open Forum Infectious Diseases, 2021, 8, ofab384.	0.9	47
51	Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genetics, 2019, 15, e1008180.	3.5	46
52	Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Human Molecular Genetics, 2022, 31, 3945-3966.	2.9	46
53	Retrospective study of a large population of patients affected with mitochondrial disorders: clinical, morphological and molecular genetic evaluation. Journal of Neurology, 2001, 248, 778-788.	3.6	45
54	Pharmacogenomics in Alzheimer's disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiology of Aging, 2013, 34, 1711.e7-1711.e13.	3.1	43

#	Article	IF	CITATIONS
55	Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients. Journal of the Neurological Sciences, 2002, 202, 85-91.	0.6	42
56	Absence of angiogenic genes modification in Italian ALS patients. Neurobiology of Aging, 2008, 29, 314-316.	3.1	41
57	Nitric oxide donor and non steroidal anti inflammatory drugs as a therapy for muscular dystrophies: Evidence from a safety study with pilot efficacy measures in adult dystrophic patients. Pharmacological Research, 2012, 65, 472-479.	7.1	40
58	Amino acid starvation induces reactivation of silenced transgenes and latent HIV-1 provirus via down-regulation of histone deacetylase 4 (HDAC4). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2284-93.	7.1	39
59	Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials, 2014, 35, 4035-4045.	11.4	39
60	A pharmacogenetic study implicates <scp><i>SLC9a9</i></scp> in multiple sclerosis disease activity. Annals of Neurology, 2015, 78, 115-127.	5.3	39
61	Immunological patterns identifying disease course and evolution in multiple sclerosis patients. Journal of Neuroimmunology, 2005, 165, 192-200.	2.3	38
62	Efficacy and safety of nabiximols (Sativex®) on multiple sclerosis spasticity in a real-life Italian monocentric study. Neurological Sciences, 2016, 37, 235-242.	1.9	38
63	Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Annals of Neurology, 2018, 84, 51-63.	5.3	38
64	Oxidative Imbalance in Different Neurodegenerative Diseases with Memory Impairment. Neurodegenerative Diseases, 2011, 8, 129-137.	1.4	37
65	The mirror neuron system and the strange case of Broca's area. Human Brain Mapping, 2015, 36, 1010-1027.	3.6	37
66	Power estimation for non-standardized multisite studies. NeuroImage, 2016, 134, 281-294.	4.2	36
67	Replication Study to Confirm the Role of CYP2D6 Polymorphism rs1080985 on Donepezil Efficacy in Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2012, 30, 745-749.	2.6	35
68	Extracellular proteasome-osteopontin circuit regulates cell migration with implications in multiple sclerosis. Scientific Reports, 2017, 7, 43718.	3.3	35
69	Alemtuzumab in multiple sclerosis during the COVID-19 pandemic: A mild uncomplicated infection despite intense immunosuppression. Multiple Sclerosis Journal, 2020, 26, 1268-1269.	3.0	35
70	Long-term management of natalizumab discontinuation in a large monocentric cohort of multiple sclerosis and Related Disorders, 2014, 3, 520-526.	2.0	34
71	Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Scientific Reports, 2017, 7, 7383.	3.3	33
72	The WNT receptor ROR2 drives the interaction of multiple myeloma cells with the microenvironment through AKT activation. Leukemia, 2020, 34, 257-270.	7.2	33

#	Article	IF	CITATIONS
73	Role of OLR1 and Its Regulating hsa-miR369-3p in Alzheimer's Disease: Genetics and Expression Analysis. Journal of Alzheimer's Disease, 2011, 26, 787-793.	2.6	31
74	Pharmacogenetic study of long-term response to interferon-Î ² treatment in multiple sclerosis. Pharmacogenomics Journal, 2017, 17, 84-91.	2.0	31
75	Role of Anti-Osteopontin Antibodies in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2017, 8, 321.	4.8	30
76	The 129 codon polymorphism of the Prion Protein gene influences earlier cognitive performance in Down syndrome subjects. Journal of Neurology, 2003, 250, 688-692.	3.6	29
77	Astrocytes acquire resistance to iron-dependent oxidative stress upon proinflammatory activation. Journal of Neuroinflammation, 2013, 10, 130.	7.2	29
78	GRN Variability Contributes to Sporadic Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2010, 19, 171-177.	2.6	28
79	Response to interferon-beta treatment in multiple sclerosis patients: a genome-wide association study. Pharmacogenomics Journal, 2017, 17, 312-318.	2.0	28
80	An MRI study of Chlamydia pneumoniae infection in Italian multiple sclerosis patients. Multiple Sclerosis Journal, 2003, 9, 467-471.	3.0	27
81	Clinical and <scp>MRI</scp> predictors of response to interferonâ€beta and glatiramer acetate in relapsing–remitting multiple sclerosis patients. European Journal of Neurology, 2013, 20, 1060-1067.	3.3	27
82	Analysis of genes, pathways and networks involved in disease severity and age at onset in primary-progressive multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1431-1442.	3.0	27
83	Association of Genetic Markers with CSF Oligoclonal Bands in Multiple Sclerosis Patients. PLoS ONE, 2013, 8, e64408.	2.5	27
84	Comparative study of mitoxantrone efficacy profile in patients with relapsing—remitting and secondary progressive multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 1490-1499.	3.0	26
85	A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility. Genes and Immunity, 2014, 15, 126-132.	4.1	26
86	Functional and structural plasticity following action observation training in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1472-1487.	3.0	26
87	Human glioma tumors express high levels ofÂtheÂchemokine receptor CX3CR1. European Cytokine Network, 2010, 21, 27-33.	2.0	26
88	Motor evoked potentials in a mouse model of chronic multiple sclerosis. Muscle and Nerve, 2006, 33, 265-273.	2.2	25
89	<i>COL6A5</i> variants in familial neuropathic chronic itch. Brain, 2017, 140, aww343.	7.6	25
90	Unraveling gene expression profiles in peripheral motor nerve from amyotrophic lateral sclerosis patients: insights into pathogenesis. Scientific Reports, 2016, 6, 39297.	3.3	24

#	Article	IF	CITATIONS
91	Linkage Analysis and Disease Models in Benign Familial Infantile Seizures: A Study of 16 Families. Epilepsia, 2006, 47, 1029-1034.	5.1	23
92	Movement preparation is affected by tissue damage in multiple sclerosis: Evidence from EEG event-related desynchronization. Clinical Neurophysiology, 2005, 116, 1515-1519.	1.5	22
93	Follow-up of a large population of asymptomatic/oligosymptomatic hyperckemic subjects. Journal of Neurology, 2006, 253, 1399-1403.	3.6	22
94	Patient-Reported Symptoms and Sequelae 12 Months After COVID-19 in Hospitalized Adults: A Multicenter Long-Term Follow-Up Study. Frontiers in Medicine, 2022, 9, 834354.	2.6	22
95	Impact of fatigue on the efficacy of rehabilitation in multiple sclerosis. Journal of Neurology, 2011, 258, 835-839.	3.6	21
96	The role of anti-hypertensive treatment, comorbidities and early introduction of LMWH in the setting of COVID-19: A retrospective, observational study in Northern Italy. International Journal of Cardiology, 2021, 324, 249-254.	1.7	21
97	The use of magnetic resonance imaging in multiple sclerosis: lessons learned from clinical trials. Multiple Sclerosis Journal, 2004, 10, 341-347.	3.0	20
98	Association study of a new polymorphism in the PECAM-1 gene in multiple sclerosis. Journal of Neuroimmunology, 2000, 104, 174-178.	2.3	19
99	Pharmacogenomic study in patients with multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e154.	6.0	19
100	Impact of MS genetic loci on familial aggregation, clinical phenotype, and disease prediction. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e129.	6.0	18
101	CHRNA7 Gene and Response to Cholinesterase Inhibitors in an Italian Cohort of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2016, 52, 1203-1208.	2.6	18
102	Clinical response to Nabiximols correlates with the downregulation of immune pathways in multiple sclerosis. European Journal of Neurology, 2018, 25, 934.	3.3	18
103	Temozolomide in glioblastoma: results of administration at first relapse and in newly diagnosed cases. Is still proposable an alternative schedule to concomitant protocol?. Journal of Neuro-Oncology, 2007, 84, 71-77.	2.9	17
104	Progranulin gene variability increases the risk for primary progressive multiple sclerosis in males. Genes and Immunity, 2010, 11, 497-503.	4.1	17
105	Association between DPP6 polymorphism and the risk of progressive multiple sclerosis in Northern and Southern Europeans. Neuroscience Letters, 2012, 530, 155-160.	2.1	17
106	Evaluation of molecular inversion probe versus TruSeq \hat{A}^{\otimes} custom methods for targeted next-generation sequencing. PLoS ONE, 2020, 15, e0238467.	2.5	17
107	Posterior reversible encephalopathy syndrome and COVID-19: A series of 6 cases from Lombardy, Italy. ENeurologicalSci, 2021, 22, 100306.	1.3	17
108	Pharmacogenetics of autoimmune diseases: Research issues in the case of Multiple Sclerosis and the role of IFN-1 ² . Journal of Autoimmunity, 2005, 25, 1-5.	6.5	15

#	Article	IF	CITATIONS
109	Effectiveness of Streptococcus Pneumoniae Urinary Antigen Testing in Decreasing Mortality of COVID-19 Co-Infected Patients: A Clinical Investigation. Medicina (Lithuania), 2020, 56, 572.	2.0	14
110	Inverse correlation of genetic risk score with age at onset in bout-onset and progressive-onset multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1463-1467.	3.0	13
111	COVIDâ€19 vaccination hesitancy among people with chronic neurological disorders: A position paper. European Journal of Neurology, 2022, 29, 2163-2172.	3.3	13
112	Failure to Replicate an Association of rs5984894 SNP in the PCDH11X Gene in a Collection of 1,222 Alzheimer's Disease Affected Patients. Journal of Alzheimer's Disease, 2010, 21, 385-388.	2.6	11
113	Short and Long Term Variation in Ultraviolet Radiation and Multiple Sclerosis. International Journal of Environmental Research and Public Health, 2012, 9, 685-697.	2.6	11
114	Predictors of effectiveness of multidisciplinary rehabilitation treatment on motor dysfunction in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 862-870.	3.0	11
115	Genetic burden of common variants in progressive and bout-onset multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 802-811.	3.0	11
116	NLRP3 polymorphisms and response to interferon-beta in multiple sclerosis patients. Multiple Sclerosis Journal, 2018, 24, 1507-1510.	3.0	11
117	CSF metabolites in the differential diagnosis of Alzheimer's disease from frontal variant of frontotemporal dementia. Neurological Sciences, 2012, 33, 973-977.	1.9	10
118	The burden of multiple sclerosis variants in continental Italians and Sardinians. Multiple Sclerosis Journal, 2015, 21, 1385-1395.	3.0	10
119	MGAT5 and disease severity in progressive multiple sclerosis. Journal of Neuroimmunology, 2011, 230, 143-147.	2.3	9
120	No C9orf72 repeat expansion in patients with primary progressive multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 25, 192-195.	2.0	9
121	Untangling Extracellular Proteasome-Osteopontin Circuit Dynamics in Multiple Sclerosis. Cells, 2019, 8, 262.	4.1	9
122	Evidence for use of glatiramer acetate in multiple sclerosis. Lancet Neurology, The, 2005, 4, 75-76.	10.2	8
123	No evidence of ATP1A2 involvement in 12 multiplex Italian families with benign familial infantile seizures. Neuroscience Letters, 2005, 388, 71-74.	2.1	8
124	A Strong Anti-Inflammatory Signature Revealed by Liver Transcription Profiling of Tmprss6â^'/â^' Mice. PLoS ONE, 2013, 8, e69694.	2.5	8
125	Familial clustering in Italian progressive-onset and bout-onset multiple sclerosis. Neurological Sciences, 2014, 35, 789-791.	1.9	8
126	Laser capture microdissection for transcriptomic profiles in human skin biopsies. BMC Molecular Biology, 2018, 19, 7.	3.0	7

#	Article	IF	CITATIONS
127	A pharmacogenetic study implicates NINJ2 in the response to Interferon-β in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1074-1082.	3.0	5
128	Neuromyelitis optica spectrum disorder and multiple sclerosis in a Sardinian family. Multiple Sclerosis and Related Disorders, 2018, 25, 73-76.	2.0	4
129	Assessing the role of innovative therapeutic paradigm on multiple sclerosis treatment response. Acta Neurologica Scandinavica, 2018, 138, 447-453.	2.1	4
130	Case Report: Efficacy of Rituximab in a Patient With Familial Mediterranean Fever and Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 591395.	2.4	4
131	An Investigation of the Role of Common and Rare Variants in a Large Italian Multiplex Family of Multiple Sclerosis Patients. Genes, 2021, 12, 1607.	2.4	4
132	Genomic and functional evaluation of TNFSF14 in multiple sclerosis susceptibility. Journal of Genetics and Genomics, 2021, 48, 497-507.	3.9	3
133	Contribution of Rare and Low-Frequency Variants to Multiple Sclerosis Susceptibility in the Italian Continental Population. Frontiers in Genetics, 2021, 12, 800262.	2.3	3
134	Transmembrane Protein 106B Gene (TMEM106B) Variability and Influence on Progranulin Plasma Levels in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 757-761.	2.6	2
135	Impact of multiple sclerosis risk loci in postinfectious neurological syndromes. Multiple Sclerosis and Related Disorders, 2020, 44, 102326.	2.0	2
136	The Use of Antiviral Agents against SARS-CoV-2: Ineffective or Time and Age Dependent Result? A Retrospective, Observational Study among COVID-19 Older Adults. Journal of Clinical Medicine, 2021, 10, 686.	2.4	2
137	Assessment of the genetic contribution to brain magnetic resonance imaging lesion load and atrophy measures in multiple sclerosis patients. European Journal of Neurology, 2021, 28, 2513-2522.	3.3	2
138	A multi-step genomic approach prioritized TBKBP1 gene as relevant for multiple sclerosis susceptibility. Journal of Neurology, 2022, 269, 4510-4522.	3.6	2
139	LETTER TO THE EDITOR. Brain Pathology, 2012, 22, 79-79.	4.1	1
140	Multiple sclerosis progression is not associated with birth timing in Italy. Journal of the Neurological Sciences, 2014, 346, 194-196.	0.6	1
141	Assessing Functional Decline in Neurological Diseases Clinical Trials: Duration of Follow-Up - The Case of Multiple Sclerosis. Frontiers of Neurology and Neuroscience, 2016, 39, 93-100.	2.8	1
142	Response to the commentary "The effect of C9orf72 intermediate repeat expansions in neurodegenerative and autoimmune diseases―by Biasiotto G and Zanella I.✰. Multiple Sclerosis and Related Disorders, 2019, 27, 79-80.	2.0	1
143	Etiological research in pediatric multiple sclerosis: A tool to assess environmental exposures (PEDiatric Italian Genetic and enviRonment ExposurE Questionnaire). Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732110590.	1.0	1
144	Advances in Neuroimmunology: From Bench to Bedside. Autoimmune Diseases, 2014, 2014, 1-2.	0.6	0

#	Article	IF	CITATIONS
145	Impact of SARS-CoV-2 infection on acute intracerebral haemorrhage in northern Italy. Journal of the Neurological Sciences, 2021, 426, 117479.	0.6	0