List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7159450/publications.pdf Version: 2024-02-01

FLODIN ROBADU

#	Article	IF	CITATIONS
1	A peridynamic model for crevice corrosion damage. Electrochimica Acta, 2022, 401, 139512.	2.6	28
2	A general and fast convolution-based method for peridynamics: Applications to elasticity and brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2022, 392, 114666.	3.4	27
3	Analytical Solutions of Peridynamic Equations. Part I: Transient Heat Diffusion. Journal of Peridynamics and Nonlocal Modeling, 2022, 4, 303-335.	1.4	5
4	Crack nucleation in brittle and quasi-brittle materials: A peridynamic analysis. Theoretical and Applied Fracture Mechanics, 2021, 112, 102855.	2.1	51
5	A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking. Journal of the Mechanics and Physics of Solids, 2021, 146, 104203.	2.3	71
6	The Role of Boundary Conditions on Convergence Properties of Peridynamic Model for Transient Heat Transfer. Journal of Scientific Computing, 2021, 87, 1.	1.1	14
7	A reformulated rate-dependent visco-elastic model for dynamic deformation and fracture of PMMA with peridynamics. International Journal of Impact Engineering, 2021, 149, 103791.	2.4	26
8	A fast convolution-based method for peridynamic transient diffusion in arbitrary domains. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113633.	3.4	35
9	Connections Between the Meshfree Peridynamics Discretization and Graph Laplacian for Transient Diffusion Problems. Journal of Peridynamics and Nonlocal Modeling, 2021, 3, 307-326.	1.4	5
10	Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete. Engineering Fracture Mechanics, 2021, 253, 107863.	2.0	25
11	A peridynamic model for galvanic corrosion and fracture. Electrochimica Acta, 2021, 391, 138968.	2.6	23
12	An ordinary state-based peridynamic elastoplastic 2D model consistent with J2 plasticity. International Journal of Solids and Structures, 2021, 229, 111146.	1.3	24
13	On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass. Engineering Fracture Mechanics, 2020, 240, 107355.	2.0	44
14	Validation of a stochastically homogenized peridynamic model for quasi-static fracture in concrete. Engineering Fracture Mechanics, 2020, 237, 107293.	2.0	33
15	A stochastic multiscale peridynamic model for corrosion-induced fracture in reinforced concrete. Engineering Fracture Mechanics, 2020, 229, 106969.	2.0	39
16	Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods. Journal of Peridynamics and Nonlocal Modeling, 2020, 2, 85-110.	1.4	35
17	Additive manufacturing of magnesium alloys. Bioactive Materials, 2020, 5, 44-54.	8.6	158
18	The Effect of Solder Joint Microstructure on the Drop Test Failure—A Peridynamic Analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 58-71.	1.4	21

FLORIN BOBARU

#	Article	IF	CITATIONS
19	Pitting, lacy covers, and pit merger in stainless steel: 3D peridynamic models. Corrosion Science, 2019, 150, 17-31.	3.0	70
20	A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites. Composites Science and Technology, 2019, 182, 107770.	3.8	51
21	Uncovering the dynamic fracture behavior of PMMA with peridynamics: The importance of softening at the crack tip. Engineering Fracture Mechanics, 2019, 219, 106617.	2.0	30
22	A peridynamic mechano-chemical damage model for stress-assisted corrosion. Electrochimica Acta, 2019, 323, 134795.	2.6	60
23	A peridynamic model for brittle damage and fracture in porous materials. International Journal of Rock Mechanics and Minings Sciences, 2019, 122, 104059.	2.6	58
24	Computational modeling of pitting corrosion. Corrosion Reviews, 2019, 37, 419-439.	1.0	49
25	Peridynamic Functionally Graded and Porous Materials: Modeling Fracture and Damage. , 2019, , 1353-1387.		2
26	3D Peridynamic Models for Pitting Corrosion and Stress Corrosion Cracking. ECS Meeting Abstracts, 2019, , .	0.0	2
27	Objectivity of State-Based Peridynamic Models for Elasticity. Journal of Elasticity, 2018, 131, 1-17.	0.9	24
28	Surface corrections for peridynamic models in elasticity and fracture. Computational Mechanics, 2018, 61, 499-518.	2.2	199
29	Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: A peridynamic analysis. International Journal of Impact Engineering, 2018, 113, 73-87.	2.4	48
30	Corrosion-induced embrittlement in ZK60A Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 7-17.	2.6	30
31	Elastic vortices and thermally-driven cracks in brittle materials with peridynamics. International Journal of Fracture, 2018, 209, 203-222.	1.1	58
32	Construction of a peridynamic model for transient advection-diffusion problems. International Journal of Heat and Mass Transfer, 2018, 126, 1253-1266.	2.5	55
33	Peridynamic Modeling of Intergranular Corrosion Damage. Journal of the Electrochemical Society, 2018, 165, C362-C374.	1.3	53
34	Peridynamic Modeling of Repassivation in Pitting Corrosion of Stainless Steel. Corrosion, 2018, 74, 393-414.	0.5	48
35	Peridynamic Functionally Graded and Porous Materials: Modeling Fracture and Damage. , 2018, , 1-35.		4
36	Linearized stateâ€based peridynamics for 2â€D problems. International Journal for Numerical Methods in Engineering, 2016, 108, 1174-1197.	1.5	92

#	Article	IF	CITATIONS
37	Validation of a peridynamic model for fatigue cracking. Engineering Fracture Mechanics, 2016, 162, 76-94.	2.0	105
38	A constructive peridynamic kernel for elasticity. Computer Methods in Applied Mechanics and Engineering, 2016, 311, 356-373.	3.4	54
39	Analysis of Corrosion-Induced Diffusion Layer in ZK60A Magnesium Alloy. Journal of the Electrochemical Society, 2016, 163, C784-C790.	1.3	20
40	The Influence of Passive Film Damage on Pitting Corrosion. Journal of the Electrochemical Society, 2016, 163, C19-C24.	1.3	64
41	Peridynamic modeling of pitting corrosion damage. Journal of the Mechanics and Physics of Solids, 2015, 78, 352-381.	2.3	199
42	Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. International Journal of Fracture, 2015, 196, 59-98.	1.1	215
43	A peridynamic model for dynamic fracture in functionally graded materials. Composite Structures, 2015, 133, 529-546.	3.1	124
44	Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion. Computer Physics Communications, 2015, 197, 51-60.	3.0	89
45	Impact damage on a thin glass plate with a thin polycarbonate backing. International Journal of Impact Engineering, 2013, 62, 152-165.	2.4	101
46	Damage progression from impact in layered glass modeled with peridynamics. Open Engineering, 2012, 2, 551-561.	0.7	30
47	The Meaning, Selection, and Use of the Peridynamic Horizon and its Relation to Crack Branching in Brittle Materials. International Journal of Fracture, 2012, 176, 215-222.	1.1	152
48	The formulation and computation of the nonlocal J-integral in bond-based peridynamics. International Journal of Fracture, 2012, 176, 195-206.	1.1	89
49	Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Computer Methods in Applied Mechanics and Engineering, 2012, 217-220, 247-261.	3.4	264
50	A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. Journal of Computational Physics, 2012, 231, 2764-2785.	1.9	223
51	PERIDYNAMICS AND MULTISCALE MODELING. International Journal for Multiscale Computational Engineering, 2011, 9, vii-ix.	0.8	7
52	MODELING DYNAMIC FRACTURE AND DAMAGE IN A FIBER-REINFORCED COMPOSITE LAMINA WITH PERIDYNAMICS. International Journal for Multiscale Computational Engineering, 2011, 9, 707-726.	0.8	94
53	Dynamic Brittle Fracture Captured With Peridynamics. , 2011, , .		4
54	The effect of rod nose shape on the internal flow fields during the ballistic penetration of sand. International Journal of Impact Engineering, 2011, 38, 951-963.	2.4	65

#	Article	IF	CITATIONS
55	Characteristics of dynamic brittle fracture captured with peridynamics. Engineering Fracture Mechanics, 2011, 78, 1156-1168.	2.0	369
56	ADAPTIVE REFINEMENT AND MULTISCALE MODELING IN 2D PERIDYNAMICS. International Journal for Multiscale Computational Engineering, 2011, 9, 635-660.	0.8	176
57	Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture, 2010, 162, 229-244.	1.1	584
58	Crack nucleation in a peridynamic solid. International Journal of Fracture, 2010, 162, 219-227.	1.1	201
59	The peridynamic formulation for transient heat conduction. International Journal of Heat and Mass Transfer, 2010, 53, 4047-4059.	2.5	302
60	Studies of dynamic crack propagation and crack branching with peridynamics. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 229-244.	0.1	8
61	Convergence, adaptive refinement, and scaling in 1D peridynamics. International Journal for Numerical Methods in Engineering, 2009, 77, 852-877.	1.5	391
62	Force chains and resonant behavior in bending of a granular layer on an elastic support. Mechanics of Materials, 2009, 41, 691-706.	1.7	11
63	Impact Mechanics and High-Energy Absorbing Materials: Review. Journal of Aerospace Engineering, 2008, 21, 235-248.	0.8	115
64	Peridynamics for multiscale materials modeling. Journal of Physics: Conference Series, 2008, 125, 012078.	0.3	151
65	Granular layers on vibrating plates: Effective bending stiffness and particle-size effects. Journal of the Acoustical Society of America, 2007, 121, 888-896.	0.5	15
66	Designing Optimal Volume Fractions For Functionally Graded Materials With Temperature-Dependent Material Properties. Journal of Applied Mechanics, Transactions ASME, 2007, 74, 861-874.	1.1	25
67	Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Modelling and Simulation in Materials Science and Engineering, 2007, 15, 397-417.	0.8	81
68	Optimization of multilayer wear-resistant thin films using finite element analysis on stiff and compliant substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 146-155.	0.9	14
69	Influence of particle size on the vibration of plates loaded with granular material. , 2006, , .		0
70	E(FG)2: a new fixed-grid shape optimization method based on the element-free galerkin mesh-free analysis. Structural and Multidisciplinary Optimization, 2006, 32, 215-228.	1.7	16
71	Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics, 2005, 40, 395-409.	1.4	336
72	Peridynamic 3D models of nanofiber networks and carbon nanotube-reinforced composites. AIP Conference Proceedings, 2004, , .	0.3	18

#	Article	IF	CITATIONS
73	Optimal shape profiles for cooling fins of high and low conductivity. International Journal of Heat and Mass Transfer, 2004, 47, 4953-4966.	2.5	45
74	Boundary layer in shape optimization of convective fins using a meshfree approach. International Journal for Numerical Methods in Engineering, 2004, 60, 1215-1236.	1.5	25
75	Meshless approach to shape optimization of linear thermoelastic solids. International Journal for Numerical Methods in Engineering, 2002, 53, 765-796.	1.5	44
76	Shape sensitivity analysis and shape optimization in planar elasticity using the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 4319-4337.	3.4	59
77	Intraply Fracture in Fiber-Reinforced Composites: A Peridynamic Analysis. , 0, , .		4