Revilija Mozuraityte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7158845/publications.pdf

Version: 2024-02-01

26 papers 806

16 h-index 610901 24 g-index

26 all docs

26 docs citations

times ranked

26

962 citing authors

#	Article	IF	CITATIONS
1	Superchilled, chilled and frozen storage of Atlantic mackerel (⟨i⟩Scomber scombrus⟨ i⟩) – effect on lipids and low molecular weight metabolites. International Journal of Food Science and Technology, 2021, 56, 1918-1928.	2.7	7
2	Low-fat (<50%) oil-in-water emulsions. , 2021, , 241-254.		0
3	Energetic and Economic Evaluation of Zero-Waste Fish Co-Stream Processing. International Journal of Environmental Research and Public Health, 2021, 18, 2358.	2.6	9
4	Influence of high-pressure processing on quality attributes of haddock and mackerel minces during frozen storage, and fishcakes prepared thereof. Innovative Food Science and Emerging Technologies, 2020, 59, 102236.	5.6	29
5	The Influence of Cooking Parameters and Chilled Storage Time on Quality of Sous-Vide Atlantic Mackerel (<i>Scomber scombrus</i>). Journal of Aquatic Food Product Technology, 2019, 28, 505-518.	1.4	32
6	Assessment of lipid oxidation in Atlantic mackerel (Scomber scombrus) subjected to different antioxidant and sous-vide cooking treatments by conventional and fluorescence microscopy methods. Food Control, 2019, 104, 1-8.	5 . 5	45
7	Superchilled, chilled and frozen storage of Atlantic mackerel (⟨i⟩Scomber scombrus⟨ i⟩) fillets – changes in texture, drip loss, protein solubility and oxidation. International Journal of Food Science and Technology, 2019, 54, 2228-2235.	2.7	33
8	Sodium reduction in processed cheese spreads and the effect on physicochemical properties. International Dairy Journal, 2019, 90, 45-55.	3.0	17
9	Quality of Filleted Atlantic Mackerel (<i>Scomber Scombrus</i>) During Chilled and Frozen Storage: Changes in Lipids, Vitamin D, Proteins, and Small Metabolites, including Biogenic Amines. Journal of Aquatic Food Product Technology, 2018, 27, 338-357.	1.4	29
10	A non-invasive approach to assess texture changes in sous-vide cooked Atlantic mackerel during chilled storage by fluorescence imaging. Food Control, 2018, 92, 216-224.	5 . 5	23
11	Twoâ€stage processing of salmon backbones to obtain highâ€quality oil and proteins. International Journal of Food Science and Technology, 2018, 53, 2378-2385.	2.7	12
12	Applicability of traditional and advanced methods for oxidative quality and stability on marine phospholipids. European Journal of Lipid Science and Technology, 2017, 119, 1600103.	1.5	5
13	Oxidative Stability and Shelf Life of Fish Oil. , 2016, , 209-231.		9
14	The role of iron in peroxidation of PUFA: Effect of pH and chelators. European Journal of Lipid Science and Technology, 2016, 118, 658-668.	1.5	25
15	Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnology Reports (Amsterdam, Netherlands), 2016, 11, 99-109.	4.4	107
16	The effect of dietary antioxidants on ironâ€mediated lipid peroxidation in marine emulsions studied by measurement of dissolved oxygen consumption. European Journal of Lipid Science and Technology, 2014, 116, 857-871.	1.5	10
17	Ironâ€mediated peroxidation in marine emulsions and liposomes studied by dissolved oxygen consumption. European Journal of Lipid Science and Technology, 2014, 116, 207-225.	1.5	29
18	Antioxidants in Fish Oil Production for Improved Quality. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1611-1621.	1.9	15

#	Article	IF	CITATION
19	Nutritionally rich marine proteins from fresh herring by-products for human consumption. Process Biochemistry, 2014, 49, 1205-1215.	3.7	24
20	Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 2009, 44, 668-677.	3.7	145
21	Antioxidant Activity of Phenolic Acids in Lipid Oxidation Catalyzed by Different Prooxidants. Journal of Agricultural and Food Chemistry, 2009, 57, 10377-10385.	5.2	79
22	Kinetic Studies of Lipid Oxidation Induced by Hemoglobin Measured by Consumption of Dissolved Oxygen in a Liposome Model System. Journal of Agricultural and Food Chemistry, 2009, 57, 7826-7833.	5.2	18
23	The use of experimental design methodology for investigating a lipid oxidation rate assay. Chemometrics and Intelligent Laboratory Systems, 2008, 91, 164-172.	3.5	1
24	The Role of Iron in Peroxidation of Polyunsaturated Fatty Acids in Liposomes. Journal of Agricultural and Food Chemistry, 2008, 56, 537-543.	5.2	46
25	Pro-oxidant activity of Fe2+in oxidation of cod phospholipids in liposomes. European Journal of Lipid Science and Technology, 2006, 108, 218-226.	1.5	28
26	Oxidation of cod phospholipids in liposomes: Effects of salts, pH and zeta potential. European Journal of Lipid Science and Technology, 2006, 108, 944-950.	1.5	29