Zhou Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7158536/publications.pdf Version: 2024-02-01

740UU

#	Article	IF	CITATIONS
1	Bioinspired Multifunctional Foam with Selfâ€Cleaning and Oil/Water Separation. Advanced Functional Materials, 2013, 23, 2881-2886.	7.8	513
2	In Vivo Powering of Pacemaker by Breathingâ€Ðriven Implanted Triboelectric Nanogenerator. Advanced Materials, 2014, 26, 5851-5856.		476
3	Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2016, 2, e1501478.	4.7	461
4	Symbiotic cardiac pacemaker. Nature Communications, 2019, 10, 1821.	5.8	429
5	A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10, 2695.	5.8	413
6	Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Advanced Science, 2017, 4, 1700029.	5.6	405
7	Muscleâ€Driven In Vivo Nanogenerator. Advanced Materials, 2010, 22, 2534-2537.	11.1	388
8	Selfâ€₽owered Pulse Sensor for Antidiastole of Cardiovascular Disease. Advanced Materials, 2017, 29, 1703456.	11.1	360
9	<i>In Vivo</i> Self-Powered Wireless Cardiac Monitoring <i>via</i> Implantable Triboelectric Nanogenerator. ACS Nano, 2016, 10, 6510-6518.	7.3	342
10	Fully Bioabsorbable Naturalâ€Materialsâ€Based Triboelectric Nanogenerators. Advanced Materials, 2018, 30, e1801895.	11.1	319
11	Supersensitive, Fastâ€Response Nanowire Sensors by Using Schottky Contacts. Advanced Materials, 2010, 22, 3327-3332.	11.1	311
12	Wearable and Implantable Triboelectric Nanogenerators. Advanced Functional Materials, 2019, 29, 1808820.	7.8	296
13	Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring. Nano Letters, 2016, 16, 6042-6051.	4.5	291
14	Cellular Level Biocompatibility and Biosafety of ZnO Nanowires. Journal of Physical Chemistry C, 2008, 112, 20114-20117.	1.5	288
15	Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. Annual Review of Biomedical Engineering, 2017, 19, 85-108.	5.7	285
16	Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS Nano, 2020, 14, 6436-6448.	7.3	223
17	Schottky ated Probeâ€Free ZnO Nanowire Biosensor. Advanced Materials, 2009, 21, 4975-4978	11.1	218
18	Implantable Energyâ€Harvesting Devices. Advanced Materials, 2018, 30, e1801511.	11.1	214

#	Article	IF	CITATIONS
19	Self-powered cardiovascular electronic devices and systems. Nature Reviews Cardiology, 2021, 18, 7-21.	6.1	206
20	Transcatheter Selfâ€Powered Ultrasensitive Endocardial Pressure Sensor. Advanced Functional Materials, 2019, 29, 1807560.	7.8	181
21	Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy, 2018, 43, 63-71.	8.2	169
22	Accelerated Skin Wound Healing by Electrical Stimulation. Advanced Healthcare Materials, 2021, 10, e2100557.	3.9	167
23	A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy, 2016, 28, 172-178.	8.2	154
24	Selfâ€Powered Intracellular Drug Delivery by a Biomechanical Energyâ€Driven Triboelectric Nanogenerator. Advanced Materials, 2019, 31, e1807795.	11.1	154
25	An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating currentÂcharging. Nature Communications, 2018, 9, 2055.	5.8	153
26	Nanogenerator for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, e1701298.	3.9	147
27	A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy, 2019, 57, 574-580.	8.2	147
28	A Stretchable Highoutput Triboelectric Nanogenerator Improved by MXene Liquid Electrode with High Electronegativity. Advanced Functional Materials, 2020, 30, 2004181.	7.8	147
29	Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. Research, 2020, 2020, 8710686.	2.8	147
30	Body-Integrated Self-Powered System for Wearable and Implantable Applications. ACS Nano, 2019, 13, 6017-6024.	7.3	142
31	Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation. ACS Nano, 2015, 9, 7867-7873.	7.3	138
32	Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy, 2018, 54, 390-399.	8.2	136
33	Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Selfâ€Powered Engine Condition Monitoring. Advanced Energy Materials, 2019, 9, 1902460.	10.2	133
34	Peptide-based nanomaterials: Self-assembly, properties and applications. Bioactive Materials, 2022, 11, 268-282.	8.6	132
35	Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88, 106199.	8.2	130
36	Enhancing the Photon- and Gas-Sensing Properties of a Single SnO ₂ Nanowire Based Nanodevice by Nanoparticle Surface Functionalization. Journal of Physical Chemistry C, 2008, 112, 11539-11544.	1.5	128

#	Article	IF	CITATIONS
37	Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale, 2016, 8, 1897-1904.	2.8	127
38	Self-powered implantable electrical stimulator for osteoblasts' proliferation and differentiation. Nano Energy, 2019, 59, 705-714.	8.2	126
39	A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy, 2017, 36, 241-249.	8.2	123
40	High-Resolution Dynamic Pressure Sensor Array Based on Piezo-phototronic Effect Tuned Photoluminescence Imaging. ACS Nano, 2015, 9, 3143-3150.	7.3	122
41	High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano, 2019, 13, 1932-1939.	7.3	116
42	Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array. Nano Letters, 2009, 9, 3575-3580.	4.5	115
43	Selfâ€Powered Distributed Water Level Sensors Based on Liquid–Solid Triboelectric Nanogenerators for Ship Draft Detecting. Advanced Functional Materials, 2019, 29, 1900327.	7.8	115
44	Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semiconductor Science and Technology, 2017, 32, 064004.	1.0	110
45	Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy. ACS Applied Materials & Interfaces, 2017, 9, 11882-11888.	4.0	110
46	Ultraâ€Stretchable and Fast Selfâ€Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber. Advanced Materials, 2022, 34, e2105416.	11.1	110
47	Schottky ontacted Nanowire Sensors. Advanced Materials, 2020, 32, e2000130.	11.1	108
48	Triboelectric nanogenerator based on degradable materials. EcoMat, 2021, 3, e12072.	6.8	108
49	Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors. Small, 2020, 16, e1904758.	5.2	107
50	Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics. Advanced Science, 2019, 6, 1801625.	5.6	106
51	Recent progress in human body energy harvesting for smart bioelectronic system. Fundamental Research, 2021, 1, 364-382.	1.6	106
52	Engineering Bacteriaâ€Activated Multifunctionalized Hydrogel for Promoting Diabetic Wound Healing. Advanced Functional Materials, 2021, 31, 2105749.	7.8	104
53	A Packaged Selfâ€Powered System with Universal Connectors Based on Hybridized Nanogenerators. Advanced Materials, 2016, 28, 846-852	11.1	103
54	Progress and biomedical applications of MXenes. Nano Select, 2021, 2, 1480-1508.	1.9	100

#	Article	IF	CITATIONS
55	The recent advances in selfâ€powered medical information sensors. InformaÄnÃ-Materiály, 2020, 2, 212-234.	8.5	96
56	Refreshable Braille Display System Based on Triboelectric Nanogenerator and Dielectric Elastomer. Advanced Functional Materials, 2021, 31, 2006612.	7.8	96
57	Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1808640.	7.8	92
58	Recent progress of nanogenerators acting as biomedical sensors in vivo. Science Bulletin, 2019, 64, 1336-1347.	4.3	91
59	A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Advanced Materials, 2021, 33, e2102302.	11.1	85
60	Direct muscle stimulation using diode-amplified triboelectric nanogenerators (TENGs). Nano Energy, 2019, 63, 103844.	8.2	84
61	Selfâ€Powered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input. Advanced Materials, 2022, 34, e2200793.	11.1	81
62	Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment. ACS Applied Materials & Interfaces, 2016, 8, 26697-26703.	4.0	79
63	A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring. Nano Energy, 2022, 92, 106715.	8.2	78
64	Human Motion Driven Self-Powered Photodynamic System for Long-Term Autonomous Cancer Therapy. ACS Nano, 2020, 14, 8074-8083.	7.3	77
65	Piezoelectric Nanotopography Induced Neuron‣ike Differentiation of Stem Cells. Advanced Functional Materials, 2019, 29, 1900372.	7.8	75
66	Stretchable, Self-Healing, and Skin-Mounted Active Sensor for Multipoint Muscle Function Assessment. ACS Nano, 2021, 15, 10130-10140.	7.3	75
67	Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter. Nano Research, 2018, 11, 4090-4101.	5.8	74
68	A wearable noncontact freeâ€rotating hybrid nanogenerator for selfâ€powered electronics. InformaÄnÃ- Materiály, 2020, 2, 1191-1200.	8.5	71
69	Fingerprint-shaped triboelectric tactile sensor. Nano Energy, 2022, 98, 107324.	8.2	70
70	A Batteryâ€Like Selfâ€Charge Universal Module for Motional Energy Harvest. Advanced Energy Materials, 2019, 9, 1901875.	10.2	68
71	Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration, 2022, 2, .	5.4	68
72	Rutile Nanorod/Anatase Nanowire Junction Array as Both Sensor and Power Supplier for Highâ€Performance, Selfâ€Powered, Wireless UV Photodetector. Small, 2016, 12, 2759-2767.	5.2	66

#	Article	IF	CITATIONS
73	Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls. Journal of Physical Chemistry C, 2009, 113, 1791-1794.	1.5	65
74	Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Science Advances, 2021, 7, .	4.7	65
75	A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. Nano Energy, 2019, 66, 104149.	8.2	62
76	Reversible Conversion between Schottky and Ohmic Contacts for Highly Sensitive, Multifunctional Biosensors. Advanced Functional Materials, 2020, 30, 1907999.	7.8	61
77	Recent development of implantable and flexible nerve electrodes. Smart Materials in Medicine, 2020, 1, 131-147.	3.7	61
78	Triboelectric Nanogenerator Enhanced Schottky Nanowire Sensor for Highly Sensitive Ethanol Detection. Nano Letters, 2020, 20, 4968-4974.	4.5	58
79	A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Materials Today Energy, 2020, 16, 100386.	2.5	58
80	Self-powered photodetector for ultralow power density UV sensing. Nano Today, 2022, 43, 101399.	6.2	57
81	Selfâ€Healing Functional Electronic Devices. Small, 2021, 17, e2101383.	5.2	55
82	Bioinspired sensor system for health care and humanâ€machine interaction. EcoMat, 2022, 4, .	6.8	54
83	A Selfâ€₽owered Triboelectric Hybrid Coder for Human–Machine Interaction. Small Methods, 2022, 6, e2101529.	4.6	53
84	Selfâ€Powered Controllable Transdermal Drug Delivery System. Advanced Functional Materials, 2021, 31, 2104092.	7.8	52
85	Tuning peptide self-assembly by an in-tether chiral center. Science Advances, 2018, 4, eaar5907.	4.7	50
86	Self-powered pulsed direct current stimulation system for enhancing osteogenesis in MC3T3-E1. Nano Energy, 2021, 85, 106009.	8.2	50
87	Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material. ACS Applied Materials & Interfaces, 2021, 13, 42966-42976.	4.0	50
88	Elastic Cu@PPy sponge for hybrid device with energy conversion and storage. Nano Energy, 2019, 58, 852-861.	8.2	49
89	Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces. Applied Physics Letters, 2011, 99, .	1.5	47
90	Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting. Nano Energy, 2020, 69, 104417.	8.2	47

#	Article	IF	CITATIONS
91	Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction. Journal of Materials Chemistry B, 2020, 8, 3647-3654.	2.9	47
92	Wearable Wire-Shaped Symmetric Supercapacitors Based on Activated Carbon-Coated Graphite Fibers. ACS Applied Materials & Interfaces, 2018, 10, 34302-34310.	4.0	46
93	Biocideâ€Free Antifouling on Insulating Surface by Waveâ€Driven Triboelectrificationâ€Induced Potential Oscillation. Advanced Materials Interfaces, 2016, 3, 1600187.	1.9	45
94	A flexible self-arched biosensor based on combination of piezoelectric and triboelectric effects. Applied Materials Today, 2020, 20, 100699.	2.3	45
95	Nanogenerator-based devices for biomedical applications. Nano Energy, 2021, 89, 106461.	8.2	45
96	Human joint enabled flexible self-sustainable sweat sensors. Nano Energy, 2022, 92, 106786.	8.2	45
97	Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications. Materials Science and Engineering C, 2019, 105, 110015.	3.8	44
98	Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Select, 2021, 2, 1117-1145.	1.9	43
99	Plasmonâ€Induced Pyroâ€Phototronic Effect Enhancement in Selfâ€Powered UV–Vis Detection with a ZnO/CuO p–n Junction Device. Advanced Functional Materials, 2022, 32, 2108903.	7.8	43
100	Enhanced Performance of a Selfâ€₽owered ZnO Photodetector by Coupling LSPRâ€Inspired Pyroâ€₽hototronic Effect and Piezoâ€₽hototronic Effect. Advanced Optical Materials, 2022, 10, .	3.6	42
101	High-Throughput and Self-Powered Electroporation System for Drug Delivery Assisted by Microfoam Electrode. ACS Nano, 2020, 14, 15458-15467.	7.3	41
102	A Hybrid Biofuel and Triboelectric Nanogenerator for Bioenergy Harvesting. Nano-Micro Letters, 2020, 12, 50.	14.4	41
103	Microstructure and thermal stability of Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coatings. Applied Surface Science, 2018, 440, 932-938.	3.1	40
104	Selfâ€Powerbility in Electrical Stimulation Drug Delivery System. Advanced Materials Technologies, 2022, 7, 2100055.	3.0	40
105	Triboelectrification induced UV emission from plasmon discharge. Nano Research, 2015, 8, 219-226.	5.8	39
106	A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing. Materials, 2021, 14, 1689.	1.3	38
107	An effective self-powered strategy to endow titanium implant surface with associated activity of anti-biofilm and osteogenesis. Nano Energy, 2020, 77, 105201.	8.2	38
108	Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry A, 2022, 10, 8107-8128.	5.2	38

#	Article	IF	CITATIONS
109	Bio-inspired special wetting surfaces via self-assembly. Science China Chemistry, 2012, 55, 2327-2333.	4.2	37
110	Porous Ti-10Mo alloy fabricated by powder metallurgy for promoting bone regeneration. Science China Materials, 2019, 62, 1053-1064.	3.5	37
111	Black Phosphorus Nanosheets Passivation Using a Tripeptide. Small, 2018, 14, e1801701.	5.2	36
112	Self-powered wearable electronics. Wearable Technologies, 2020, 1, .	1.6	36
113	Self-Powered Force Sensors for Multidimensional Tactile Sensing. ACS Applied Materials & Interfaces, 2022, 14, 20122-20131.	4.0	35
114	Triboelectric-polarization-enhanced high sensitive ZnO UV sensor. Nano Today, 2020, 33, 100873.	6.2	33
115	Recent progress of self-powered respiration monitoring systems. Biosensors and Bioelectronics, 2021, 194, 113609.	5.3	33
116	Self-powered technology for next-generation biosensor. Science Bulletin, 2021, 66, 1709-1712.	4.3	32
117	Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Science Bulletin, 2022, 67, 1284-1294.	4.3	30
118	Hierarchical nested-network porous copper fabricated by one-step dealloying for glucose sensing. Journal of Alloys and Compounds, 2016, 681, 109-114.	2.8	29
119	Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundamental Research, 2022, 2, 619-628.	1.6	29
120	Chemical warfare agents decontamination via air mircoplasma excited by a triboelectric nanogenerator. Nano Energy, 2022, 95, 106992.	8.2	29
121	Towards a sustainable monitoring: A self-powered smart transportation infrastructure skin. Nano Energy, 2022, 98, 107245.	8.2	29
122	An Artificial Intelligence-Enhanced Blood Pressure Monitor Wristband Based on Piezoelectric Nanogenerator. Biosensors, 2022, 12, 234.	2.3	29
123	Body Temperature Enhanced Adhesive, Antibacterial, and Recyclable Ionic Hydrogel for Epidermal Electrophysiological Monitoring. Advanced Healthcare Materials, 2022, 11, .	3.9	29
124	Conductive Microneedle Patch with Electricity-Triggered Drug Release Performance for Atopic Dermatitis Treatment. ACS Applied Materials & Interfaces, 2022, 14, 31645-31654.	4.0	29
125	Bioinspired highly electrically conductive graphene–epoxy layered composites. RSC Advances, 2015, 5, 22283-22288.	1.7	28
126	Rehabilitation of Total Knee Arthroplasty by Integrating Conjoint Isometric Myodynamia and Realâ€Time Rotation Sensing System. Advanced Science, 2022, 9, e2105219.	5.6	28

#	Article	IF	CITATIONS
127	Ag nanoparticle–ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach. Nanotechnology, 2014, 25, 145702.	1.3	27
128	Pyro-phototronic effect enhanced self-powered photodetector. International Journal of Optomechatronics, 2022, 16, 1-17.	3.3	27
129	Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring. Nano Research, 2022, 15, 2465-2471.	5.8	26
130	Long-term antibacterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects. Applied Surface Science, 2017, 414, 230-237.	3.1	25
131	A hierarchical bilayer architecture for complex tissue regeneration. Bioactive Materials, 2022, 10, 93-106.	8.6	25
132	Field enhanced photocatalytic disinfection. Science Bulletin, 2022, 67, 779-783.	4.3	25
133	Electrospun Scaffolds Containing Silver-Doped Hydroxyapatite with Antimicrobial Properties for Applications in Orthopedic and Dental Bone Surgery. Journal of Functional Biomaterials, 2020, 11, 58.	1.8	24
134	<i>In Vivo</i> Delivery of Atoh1 Gene to Rat Cochlea Using a Dendrimer-Based Nanocarrier. Journal of Biomedical Nanotechnology, 2013, 9, 1736-1745.	0.5	23
135	Alkali Metal Chlorides Based Hydrogel as Ecoâ€Friendly Neutral Electrolyte for Bendable Solidâ€&tate Capacitor. Advanced Materials Interfaces, 2018, 5, 1701648.	1.9	23
136	An Ultraâ€ £ imple Charge Supplementary Strategy for High Performance Rotary Triboelectric Nanogenerators. Small, 2021, 17, e2101430.	5.2	23
137	Hybrid Nanogenerator for Biomechanical Energy Harvesting, Motion State Detection, and Pulse Sensing. Advanced Materials Technologies, 2022, 7, .	3.0	21
138	Shape Designed Implanted Drug Delivery System for <i>In Situ</i> Hepatocellular Carcinoma Therapy. ACS Nano, 2022, 16, 8493-8503.	7.3	21
139	Self-Assembly of Constrained Cyclic Peptides Controlled by Ring Size. CCS Chemistry, 2020, 2, 42-51.	4.6	20
140	A Gyroscope Nanogenerator with Frequency Upâ€Conversion Effect for Fitness and Energy Harvesting. Small, 2022, 18, e2108091.	5.2	18
141	Cancer Therapy: Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator (Adv. Funct. Mater. 41/2019). Advanced Functional Materials, 2019, 29, 1970285.	7.8	17
142	Flexible Supercapacitors Based on Graphene/Boron Nitride Nanosheets Electrodes and PVA/PEI Gel Electrolytes. Materials, 2021, 14, 1955.	1.3	17
143	A multiple laser-induced hybrid electrode for flexible triboelectric nanogenerators. Sustainable Energy and Fuels, 2021, 5, 3737-3743.	2.5	17
144	Rapidly separable bubble microneedle patch for effective local anesthesia. Nano Research, 2022, 15, 8336-8344.	5.8	16

Zноu Li

#	Article	IF	CITATIONS
145	The first technology can compete with piezoelectricity to harvest ultrasound energy for powering medical implants. Science Bulletin, 2019, 64, 1565-1566.	4.3	14
146	Recent Progress of Nanogenerators Acting as Selfâ€Powered Drug Delivery Devices. Advanced Sustainable Systems, 2021, 5, 2000268.	2.7	14
147	Assistive devices for the people with disabilities enabled by triboelectric nanogenerators. JPhys Materials, 2021, 4, 034015.	1.8	14
148	Rapid photoresponse of single-crystalline selenium nanobelts. Solid State Communications, 2008, 148, 145-147.	0.9	13
149	Bio-inspired multifunctional metallic glass. Science China Chemistry, 2016, 59, 271-276.	4.2	13
150	PEIGel: A biocompatible and injectable scaffold with innate immune adjuvanticity for synergized local immunotherapy. Materials Today Bio, 2022, 15, 100297.	2.6	13
151	Enhanced thermal stability of ZrAlSiN cermet-based solar selective absorbing coatings via adding silicon element. Materials Today Physics, 2019, 9, 100131.	2.9	12
152	Electrical Stimulation for Nervous System Injury: Research Progress and Prospects. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	12
153	Thermoâ€Driven Evaporation Selfâ€Assembly and Dynamic Analysis of Homocentric Carbon Nanotube Rings. Small, 2017, 13, 1603642.	5.2	11
154	Noninvasive manipulation of cell adhesion for cell harvesting with piezoelectric composite film. Applied Materials Today, 2021, 25, 101218.	2.3	10
155	LSPRâ€Enhanced Pyroâ€₱hototronic Effect for UV Detection with an Ag–ZnO Schottky Junction Device. Advanced Materials Interfaces, 2022, 9, .	1.9	10
156	Piezoelectricâ€Enhanced Oriented Cobalt Coordinated Peptide Monolayer with Rectification Behavior. Small, 2015, 11, 4864-4869.	5.2	9
157	Assessment of extracellular matrix modulation of cell traction force by using silicon nanowire array. Nano Energy, 2018, 50, 504-512.	8.2	9
158	Combining triboelectric nanogenerator with piezoelectric effect for optimizing Schottky barrier height modulation. Science Bulletin, 2021, 66, 1409-1418.	4.3	9
159	Tunable Schottky barrier height of a Pt–CuO junction <i>via</i> a triboelectric nanogenerator. Nanoscale, 2021, 13, 17101-17105.	2.8	8
160	A triboelectric nanosensor based on ultra-thin MXene composite paper for heavy metal ion detection. Journal of Micromechanics and Microengineering, 2022, 32, 044003.	1.5	8
161	A Light-Powered Triboelectric Nanogenerator Based on the Photothermal Marangoni Effect. ACS Applied Materials & Interfaces, 2022, 14, 22206-22215.	4.0	8
162	Novel preparation of functionalized graphene oxide for large scale, low cost, and self-cleaning coatings of electronic devices. , 2011, , .		7

#	Article	IF	CITATIONS
163	Influence of the aluminum content on structure and optical properties of Zr 1-x Al x N films. Vacuum, 2017, 145, 268-271.	1.6	7
164	Research progress of self-powered flexible biomedical sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178704.	0.2	7
165	A Self-Powered Optogenetic System for Implantable Blood Glucose Control. Research, 2022, 2022, .	2.8	7
166	Selfâ€Powered Intelligent Voice Navigation Tactile Pavement Based on Highâ€Output Hybrid Nanogenerator. Advanced Materials Technologies, 2022, 7, .	3.0	7
167	Fabrication of Concentric Carbon Nanotube Rings and Their Application on Regulating Cell Growth. ACS Omega, 2019, 4, 16209-16216.	1.6	6
168	Self-Powered Electrical Impulse Chemotherapy for Oral Squamous Cell Carcinoma. Materials, 2022, 15, 2060.	1.3	6
169	Recent progress of electroactive interface in neural engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	6
170	Biocompatible Single-Crystal Selenium Nanobelt Based Nanodevice as a Temperature-Tunable Photosensor. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	5
171	Titanium Dioxide Nanoparticles Induced Proinflammation of Primary Cultured Cardiac Myocytes of Rat. Journal of Nanomaterials, 2013, 2013, 1-9.	1.5	5
172	Endocardial Pressure Sensors: Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor (Adv. Funct. Mater. 3/2019). Advanced Functional Materials, 2019, 29, 1970017.	7.8	5
173	Stretchable Sensors: Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors (Small 7/2020). Small, 2020, 16, 2070037.	5.2	4
174	Structure-activity collective properties underlying self-assembled superstructures. Nano Today, 2022, 42, 101354.	6.2	4
175	The modulation effect of the convexity of silicon topological nanostructures on the growth of mesenchymal stem cells. RSC Advances, 2017, 7, 16977-16983.	1.7	3
176	Fabrication of a spontaneously bent ZnO nanowire with asymmetrical dots by UV irradiation. RSC Advances, 2017, 7, 38014-38018.	1.7	3
177	Release of Ag/ZnO Nanomaterials and Associated Risks of a Novel Water Sterilization Technology. Water (Switzerland), 2019, 11, 2276.	1.2	3
178	Fabrication and performance test of biodegradable supercapacitor. MRS Advances, 2019, 4, 2063-2070.	0.5	3
179	Large-Scale Fabrication of Ordered Monolayer Self-assembly of Polystyrene Submicron Spheres. Lecture Notes in Electrical Engineering, 2018, , 827-832.	0.3	2
180	High-Throughput Identification and Screening of Single Microbial Cells by Nanobowl Array. ACS Applied Materials & amp; Interfaces, 2019, 11, 44933-44940.	4.0	2

#	Article	IF	CITATIONS
181	Bioabsorbable Capacitors: Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics (Adv. Sci. 6/2019). Advanced Science, 2019, 6, 1970035.	5.6	2
182	Ultra‣tretchable and Fast Selfâ€Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber (Adv. Mater. 16/2022). Advanced Materials, 2022, 34, .	11.1	2
183	Localized Myocardial Anti-Inflammatory Effects of Temperature-Sensitive Budesonide Nanoparticles during Radiofrequency Catheter Ablation. Research, 2022, 2022, .	2.8	2
184	Effect of Gold/Fe _{3} O _{4} Nanoparticles on Biocompatibility and Neural Differentiation of Rat Olfactory Bulb Neural Stem Cells. Journal of Nanomaterials, 2013, 2013, 1-7.	1.5	1
185	Application of the Oxidation of Hydrogen Peroxide for DNA Sensing Based on Platinum Deposition. Sensors and Materials, 2015, , 1.	0.3	1
186	(Invited) Self-Powered, Wireless Medical Sensor andÂDevices. ECS Meeting Abstracts, 2016, MA2016-01, 1280-1280.	0.0	1
187	Self-powered implantable electronic medical devices research based on triboelectric nanogenerator. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2017, 47, 1075-1080.	0.3	1
188	Fully Bioabsorbable Capacitor As an Energy Storage Unit for Implantable Medical Electronics. ECS Meeting Abstracts, 2019, , .	0.0	1
189	(Invited) Self-Powered Medical Electronics. ECS Meeting Abstracts, 2019, MA2019-01, 1330-1330.	0.0	1
190	Implantable Sufficiently Integrated Multimodal Flexible Sensor for Intracranial Monitoring. , 2021, , .		1
191	Research Highlights in the Beijing Institute of Nanoenergy and Nanosystems. Advanced Functional Materials, 2019, 29, 1906059.	7.8	0
192	Elastic Cu@Ppy Sponge for Hybrid Device with Energy Conversion and Storage. ECS Meeting Abstracts, 2019, , .	0.0	0
193	A High-Power Density Triboelectric Nanogenerator for Harvesting Wave Energy. ECS Meeting Abstracts, 2019, , .	0.0	0
194	Highly-Sensitivity and Self-Powered Ocean Wave Sensor Based on Liquid-Solid Interfacing Triboelectric Nanogenerator. ECS Meeting Abstracts, 2019, , .	0.0	0
195	Biodegradable Self-Powered Electronics. ECS Meeting Abstracts, 2019, , .	0.0	0
196	Biodegradable Self-Powered Electronics and Application in Biomedical Engineering. ECS Meeting Abstracts, 2019, , .	0.0	0
197	Alkali Metal Chlorides Based Hydrogel As Eco-Friendly Neutral Electrolyte for Bendable Solid-State Capacitor. ECS Meeting Abstracts, 2019, , .	0.0	0
198	A triboelectric nanosensor based on ultra-thin MXene composite paper for heavy metal ion detection. Journal of Micromechanics and Microengineering, 0, , .	1.5	0

		Zhou Li		
#	Article		IF	CITATIONS
199	Self-Assembly of Constrained Cyclic Peptides Controlled by Ring Size. CCS Chemistry, 0, , 4	42-51.	4.6	0