Min Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7158321/publications.pdf

Version: 2024-02-01

126708 143772 3,523 57 79 33 citations h-index g-index papers 79 79 79 3889 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Identification of oxidosqualene cyclases associated with saponin biosynthesis from Astragalus membranaceus reveals a conserved motif important for catalytic function. Journal of Advanced Research, 2023, 43, 247-257.	4.4	9
2	Catalytic function, mechanism, and application of plant acyltransferases. Critical Reviews in Biotechnology, 2022, 42, 125-144.	5.1	18
3	A network pharmacology-based strategy to explore the pharmacological mechanisms of Antrodia camphorata and antcin K for treating type II diabetes mellitus. Phytomedicine, 2022, 96, 153851.	2.3	9
4	A highly selective 2′′- <i>O</i> -glycosyltransferase from <i>Ziziphus jujuba</i> and <i>De novo</i> biosynthesis of isovitexin 2′′- <i>O</i> -glucoside. Chemical Communications, 2022, 58, 2472-2475.	2.2	4
5	GuRhaGT, a highly specific saponin 2′′- <i>O</i> rhamnosyltransferase from <i>Glycyrrhiza uralensis</i> Chemical Communications, 2022, 58, 5277-5280.	2.2	8
6	ä¸è•è•æ•^物è^;°°ç©¶æ−¹æ³•åŠèį›å±•. Scientia Sinica Vitae, 2022, , .	0.1	0
7	Functional Characterization and Protein Engineering of a Triterpene 3â€∤6â€∤2′â€∢i>Oà€Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angewandte Chemie, 2022, 134, .	e 1.6	4
8	Functional Characterization and Protein Engineering of a Triterpene 3â€∤6â€∤2†al>O< li>â€Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angewandte Chemie - International Edition, 2022, 61, .	se 7.2	23
9	Rational design of a highly selective UGT1A1 probe and its application in drug discovery. Sensors and Actuators B: Chemical, 2022, 364, 131826.	4.0	4
10	Comparative bioactivity evaluation and chemical profiling of different parts of the medicinal plant Glycyrrhiza uralensis. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215, 114793.	1.4	13
11	Bioactive prenylated phenolic compounds from the aerial parts of Glycyrrhiza uralensis. Phytochemistry, 2022, 201, 113284.	1.4	6
12	Biotransformation of natural products and its significance in drug development., 2022,, 755-770.		0
13	Terpenoids from the medicinal mushroom <i>Antrodia camphorata</i> potential. Natural Product Reports, 2021, 38, 83-102.	5.2	58
14	Simultaneous determination of 35 constituents and elucidation of effective constituents in a multi-herb Chinese medicine formula Xiaoer-Feire-Kechuan. Journal of Pharmaceutical Analysis, 2021, 11, 717-725.	2.4	6
15	AmAT19, an acetyltransferase from Astragalus membranaceus, catalyses specific $6\hat{l}$ ±-OH acetylation for tetracyclic triterpenes and steroids. Organic and Biomolecular Chemistry, 2021, 19, 7186-7189.	1.5	3
16	Generation of Unusual Aromatic Polyketides by Incorporation of Phenylamine Analogues into a C-Ring-Cleaved Angucyclinone. Molecules, 2021, 26, 1959.	1.7	0
17	A global profiling strategy using comprehensive two-dimensional liquid chromatography coupled with dual-mass spectrometry platforms: Chemical analysis of a multi-herb Chinese medicine formula as a case study. Journal of Chromatography A, 2021, 1642, 462021.	1.8	14
18	Glabrone as a specific UGT1A9 probe substrate and its application in discovering the inhibitor glycycoumarin. European Journal of Pharmaceutical Sciences, 2021, 161, 105786.	1.9	5

#	Article	IF	Citations
19	Chemical modifications of ergostane-type triterpenoids from Antrodia camphorata and their cytotoxic activities. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128066.	1.0	O
20	Characterization of a Highly Selective 2″- <i>O</i> -Galactosyltransferase from <i>Trollius chinensis</i> and Structure-Guided Engineering for Improving UDP-Glucose Selectivity. Organic Letters, 2021, 23, 9020-9024.	2.4	12
21	Site-directed mutagenesis and substrate compatibility to reveal the structure–function relationships of plant oxidosqualene cyclases. Natural Product Reports, 2021, 38, 2261-2275.	5.2	14
22	AChE inhibitory alkaloids from Coptis chinensis. Fìtoterapìâ, 2020, 141, 104464.	1.1	9
23	Antcamphorols A–K, Cytotoxic and ROS Scavenging Triterpenoids from <i>Antrodia camphorata</i> Journal of Natural Products, 2020, 83, 45-54.	1.5	13
24	Enzymatic O â€Prenylation of Diverse Phenolic Compounds by a Permissive O â€Prenyltransferase from the Medicinal Mushroom Antrodia camphorata. Advanced Synthesis and Catalysis, 2020, 362, 528-532.	2.1	4
25	Chemical constituents from the dish-cultured Antrodia camphorata and their cytotoxic activities. Journal of Asian Natural Products Research, 2020, 23, 1-9.	0.7	1
26	Dissection of the general two-step di- $\langle i \rangle C \langle i \rangle$ -glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30816-30823.	3.3	55
27	Discovery of Targeted Covalent Natural Products against PLK1 by Herb-Based Screening. Journal of Chemical Information and Modeling, 2020, 60, 4350-4358.	2.5	12
28	Targeted characterization of acylated compounds from Scrophulariae Radix using liquid chromatography coupled with Orbitrap mass spectrometry and diagnostic product ionâ€based data analysis. Journal of Separation Science, 2020, 43, 3391-3398.	1.3	6
29	Prenylated Phenolic Compounds from the Aerial Parts of <i>Glycyrrhiza uralensis</i> as PTP1B and α-Glucosidase Inhibitors. Journal of Natural Products, 2020, 83, 814-824.	1.5	30
30	Functional Characterization and Structural Basis of an Efficient Di- <i>C</i> -glycosyltransferase from <i>Glycyrrhiza glabra</i> . Journal of the American Chemical Society, 2020, 142, 3506-3512.	6.6	76
31	Cytotoxic triterpenoids from <i>Antrodia camphorata </i> sensitizers of paclitaxel. Organic Chemistry Frontiers, 2020, 7, 768-779.	2.3	9
32	Diversity of <i>O</i> -Glycosyltransferases Contributes to the Biosynthesis of Flavonoid and Triterpenoid Glycosides in <i>Glycyrrhiza uralensis</i> . ACS Synthetic Biology, 2019, 8, 1858-1866.	1.9	43
33	Rapid quantitation and identification of the chemical constituents in Danhong Injection by liquid chromatography coupled with orbitrap mass spectrometry. Journal of Chromatography A, 2019, 1606, 460378.	1.8	22
34	Molecular cloning and biochemical characterization of a new flavonoid glycosyltransferase from the aquatic plant lotus. Biochemical and Biophysical Research Communications, 2019, 510, 315-321.	1.0	8
35	Molecular and Structural Characterization of a Promiscuous <i>C</i> â€Glycosyltransferase from <i>Trollius chinensis</i> . Angewandte Chemie, 2019, 131, 11637-11644.	1.6	14
36	Molecular and Structural Characterization of a Promiscuous <i>C</i> â€Glycosyltransferase from <i>Trollius chinensis</i> . Angewandte Chemie - International Edition, 2019, 58, 11513-11520.	7.2	105

#	Article	IF	CITATIONS
37	Highly Promiscuous Flavonoid 3- <i>O</i> -Glycosyltransferase from <i>Scutellaria baicalensis</i> -Organic Letters, 2019, 21, 2241-2245.	2.4	50
38	Discovery of a Phenylamine-Incorporated Angucyclinone from Marine <i>Streptomyces</i> sp. PKU-MA00218 and Generation of Derivatives with Phenylamine Analogues. Organic Letters, 2019, 21, 2813-2817.	2.4	11
39	Antitussive and expectorant activities of licorice and its major compounds. Bioorganic and Medicinal Chemistry, 2018, 26, 278-284.	1.4	76
40	A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of <i>Scutellaria baicalensis</i> . Pharmaceutical Biology, 2018, 56, 465-484.	1.3	230
41	Regio-specific prenylation of pterocarpans by a membrane-bound prenyltransferase from <i>Psoralea corylifolia</i> . Organic and Biomolecular Chemistry, 2018, 16, 6760-6766.	1.5	10
42	UGT73F17, a new glycosyltransferase from <i>Glycyrrhiza uralensis</i> , catalyzes the regiospecific glycosylation of pentacyclic triterpenoids. Chemical Communications, 2018, 54, 8594-8597.	2.2	34
43	Enzymatic glycosylation of oleanane-type triterpenoids. Journal of Asian Natural Products Research, 2018, 20, 615-623.	0.7	14
44	Glycybridins A–K, Bioactive Phenolic Compounds from <i>Glycyrrhiza glabra</i> . Journal of Natural Products, 2017, 80, 334-346.	1.5	71
45	Biosynthesis-Based Quantitative Analysis of 151 Secondary Metabolites of Licorice To Differentiate Medicinal <i>Glycyrrhiza</i> Species and Their Hybrids. Analytical Chemistry, 2017, 89, 3146-3153.	3.2	116
46	Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy. Toxicology and Applied Pharmacology, 2017, 326, 25-33.	1.3	52
47	Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl 4 -induced liver injury in mice. Journal of Ethnopharmacology, 2017, 206, 31-39.	2.0	41
48	Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Bioorganic and Medicinal Chemistry, 2017, 25, 3706-3713.	1.4	53
49	Intestinal absorption and neuroprotective effects of kaempferol-3-O-rutinoside. RSC Advances, 2017, 7, 31408-31416.	1.7	14
50	Enzymatic Synthesis of Bufadienolide <i>O</i> à€Clycosides as Potent Antitumor Agents Using a Microbial Glycosyltransferase. Advanced Synthesis and Catalysis, 2017, 359, 3765-3772.	2.1	24
51	Nrf2 activators from Glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice. Bioorganic and Medicinal Chemistry, 2017, 25, 5522-5530.	1.4	47
52	Screening of hepatoprotective compounds from licorice against carbon tetrachloride and acetaminophen induced HepG2 cells injury. Phytomedicine, 2017, 34, 59-66.	2.3	40
53	Nonimmobilized Biomaterial Capillary Electrophoresis for Screening Drugs Targeting Human Glucose Transporter 1. Analytical Chemistry, 2017, 89, 12951-12959.	3.2	13
54	Antcin H Protects Against Acute Liver Injury Through Disruption of the Interaction of c-Jun-N-Terminal Kinase with Mitochondria. Antioxidants and Redox Signaling, 2017, 26, 207-220.	2.5	38

#	Article	IF	Citations
55	Neuroprotective Effects of a Standardized Flavonoid Extract from Safflower against a Rotenone-Induced Rat Model of Parkinson's Disease. Molecules, 2016, 21, 1107.	1.7	57
56	The decreased N6-methyladenine DNA modification in cancer cells. Biochemical and Biophysical Research Communications, 2016, 480, 120-125.	1.0	31
57	Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson's Disease. Scientific Reports, 2016, 6, 22135.	1.6	62
58	tRNA modification profiles of the fast-proliferating cancer cells. Biochemical and Biophysical Research Communications, 2016, 476, 340-345.	1.0	33
59	Bioactive Constituents of <i>Glycyrrhiza uralensis</i> (Licorice): Discovery of the Effective Components of a Traditional Herbal Medicine. Journal of Natural Products, 2016, 79, 281-292.	1.5	201
60	A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. Journal of Chromatography A, 2016, 1441, 83-95.	1.8	141
61	Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in <i>Curcuma longa</i> as a Case Study. Analytical Chemistry, 2016, 88, 703-710.	3.2	69
62	Bisdemethoxycurcumin exerts pro-apoptotic effects in human pancreatic adenocarcinoma cells through mitochondrial dysfunction and a GRP78-dependent pathway. Oncotarget, 2016, 7, 83641-83656.	0.8	19
63	Biocatalysis of Cycloastragenol by <i>Syncephalastrum racemosum</i> and <i>Alternaria alternata</i> to Discover Antiâ€Aging Derivatives. Advanced Synthesis and Catalysis, 2015, 357, 1928-1940.	2.1	18
64	Comprehensive chemical analysis of triterpenoids and polysaccharides in the medicinal mushroom Antrodia cinnamomea. RSC Advances, 2015, 5, 47040-47052.	1.7	23
65	Enantiomeric 3-arylcoumarins and 2-arylcoumarones from the roots of Glycyrrhiza uralensis as protein tyrosine phosphatase 1B (PTP1B) inhibitors. RSC Advances, 2015, 5, 45258-45265.	1.7	10
66	Metabolites identification and multi-component pharmacokinetics of ergostane and lanostane triterpenoids in the anticancer mushroom Antrodia cinnamomea. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 266-276.	1.4	37
67	Intestinal Absorption of Ergostane and Lanostane Triterpenoids from Antrodia cinnamomea Using Caco-2 Cell Monolayer Model. Natural Products and Bioprospecting, 2015, 5, 237-246.	2.0	15
68	Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. Journal of Ethnopharmacology, 2015, 176, 475-484.	2.0	95
69	Biotransformation of 20(R)-panaxadiol by the fungus Rhizopus chinensis. Phytochemistry, 2014, 105, 129-134.	1.4	19
70	Separation of 25R/S-ergostane triterpenoids in the medicinal mushroom Antrodia camphorata using analytical supercritical-fluid chromatography. Journal of Chromatography A, 2014, 1358, 252-260.	1.8	39
71	Antcamphins A–L, Ergostanoids from <i>Antrodia camphorata</i> . Journal of Natural Products, 2014, 77, 118-124.	1.5	37
72	Uralsaponins M–Y, Antiviral Triterpenoid Saponins from the Roots of <i>Glycyrrhiza uralensis</i> Journal of Natural Products, 2014, 77, 1632-1643.	1.5	98

#	Article	lF	CITATIONS
73	Low energy induced homolytic fragmentation of flavonol 3â€∢i>O⟨li>â€glycosides by negative electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 385-395.	0.7	53
74	A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells. Carcinogenesis, 2013, 34, 2918-2928.	1.3	73
75	Qualitative and Quantitative Analyses of Flavonoids in <i>Spirodela polyrrhiza</i> by Highâ€performance Liquid Chromatography Coupled with Mass Spectrometry. Phytochemical Analysis, 2011, 22, 475-483.	1.2	72
76	Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). Journal of Chromatography A, 2009, 1216, 1954-1969.	1.8	462
77	Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 1469-1484.	0.7	144
78	Analysis of bufadienolides in the Chinese drug ChanSu by high-performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 1881-1892.	0.7	79
79	Novel cytotoxic bufadienolides derived from bufalin by microbial hydroxylation and their structure–activity relationships. Journal of Steroid Biochemistry and Molecular Biology, 2004, 91, 87-98.	1.2	85