Avelino Alvarez-OrdÃ³ñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7157957/publications.pdf Version: 2024-02-01

	87723	114278
4,877	38	63
citations	h-index	g-index
131	131	5351
docs citations	times ranked	citing authors
	citations 131	4,87738citationsh-index131131

#	Article	IF	CITATIONS
1	Development and characterization of anti-biofilm coatings applied by Non-Equilibrium Atmospheric Plasma on stainless steel. Food Research International, 2022, 152, 109891.	2.9	13
2	Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Science, 2022, 183, 108661.	2.7	93
3	Application of genomics and metagenomics to improve food safety based on an enhanced characterisation of antimicrobial resistance. Current Opinion in Food Science, 2022, 43, 183-188.	4.1	4
4	Frozen Vegetable Processing Plants Can Harbour Diverse Listeria monocytogenes Populations: Identification of Critical Operations by WGS. Foods, 2022, 11, 1546.	1.9	8
5	Systematic Review and Meta-Analysis of the Efficacy of Interventions Applied during Primary Processing to Reduce Microbial Contamination on Pig Carcasses. Foods, 2022, 11, 2110.	1.9	9
6	Applying Genomics to Track Antimicrobial Resistance in the Food Chain. , 2021, , 188-211.		3
7	Environmental microbiome mapping as a strategy to improve quality and safety in the food industry. Current Opinion in Food Science, 2021, 38, 168-176.	4.1	47
8	Effect of antimicrobial use and production system on <i>Campylobacter</i> spp., <i>Staphylococcus</i> spp. and <i>Salmonella</i> spp. resistance in Spanish swine: A crossâ€sectional study. Zoonoses and Public Health, 2021, 68, 54-66.	0.9	9
9	The use of the soâ€called â€~superchilling' technique for the transport of fresh fishery products. EFSA Journal, 2021, 19, e06378.	0.9	4
10	Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics, 2021, 10, 209.	1.5	58
11	Unraveling the emergence and population diversity of Listeria monocytogenes in a newly built meat facility through whole genome sequencing. International Journal of Food Microbiology, 2021, 340, 109043.	2.1	28
12	Antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. is influenced by production system, antimicrobial use, and biosecurity measures on Spanish pig farms. Porcine Health Management, 2021, 7, 27.	0.9	17
13	Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42°C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiology, 2021, 95, 103706.	2.1	16
14	High-throughput sequencing reveals genetic determinants associated with antibiotic resistance in Campylobacter spp. from farm-to-fork. PLoS ONE, 2021, 16, e0253797.	1.1	17
15	Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA Journal, 2021, 19, e06651.	0.9	68
16	Development and validation of a regression model for Listeria monocytogenes growth in roast beefs. Food Microbiology, 2021, 98, 103770.	2.1	3
17	Heterogeneity in biofilm formation and identification of biomarkers of strong biofilm formation among field isolates of Pseudomonas spp Food Research International, 2021, 148, 110618.	2.9	2
18	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 13: suitability of taxonomic units notified to EFSA until September 2020. EFSA Journal, 2021, 19, e06377.	0.9	127

#	Article	IF	CITATIONS
19	Editorial: Microbiological Risks in Food Processing. Frontiers in Sustainable Food Systems, 2021, 4, .	1.8	4
20	Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. Microbiome, 2021, 9, 204.	4.9	20
21	Novel methods of microbiome analysis in the food industry. International Microbiology, 2021, 24, 593-605.	1.1	7
22	Inactivation of indicator microorganisms and biological hazards by standard and/or alternative processing methods in Category 2 and 3 animal byâ€products and derived products to be used as organic fertilisers and/or soil improvers. EFSA Journal, 2021, 19, e06932.	0.9	2
23	Evaluation of Cold Atmospheric Pressure Plasma (CAPP) and plasma-activated water (PAW) as alternative non-thermal decontamination technologies for tofu: Impact on microbiological, sensorial and functional quality attributes. Food Research International, 2020, 129, 108859.	2.9	38
24	Effect of high hydrostatic pressure processing of milk on the quality characteristics of kefir. Journal of Food Processing and Preservation, 2020, 44, e14797.	0.9	1
25	Update and review of control options for Campylobacter in broilers at primary production. EFSA Journal, 2020, 18, e06090.	0.9	62
26	Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. Microbiome, 2020, 8, 164.	4.9	39
27	The role of the general stress response regulator RpoS in Cronobacter sakazakii biofilm formation. Food Research International, 2020, 136, 109508.	2.9	17
28	Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli in Pigs and Pork Meat in the European Union. Antibiotics, 2020, 9, 678.	1.5	36
29	Identification of study habits and skills associated with the academic performance of Bachelor's degree Food Science and Technology students at the University of LeA³n (Spain). Journal of Food Science Education, 2020, 19, 250-262.	1.0	2
30	Evaluation of Alternative Methods of Tunnel Composting (submitted by the European Composting) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
31	Guidance on date marking and related food information: part 1 (date marking). EFSA Journal, 2020, 18, e06306.	0.9	17
32	Effect of Non-Thermal Atmospheric Plasma on Food-Borne Bacterial Pathogens on Ready-to Eat Foods: Morphological and Physico-Chemical Changes Occurring on the Cellular Envelopes. Foods, 2020, 9, 1865.	1.9	3
33	Potential BSE risk posed by the use of ruminant collagen and gelatine in feed for nonâ€ruminant farmed animals. EFSA Journal, 2020, 18, e06267.	0.9	8
34	Atmospheric pressure cold plasma anti-biofilm coatings for 3D printed food tools. Innovative Food Science and Emerging Technologies, 2020, 64, 102404.	2.7	18
35	The use of the soâ€called â€~tubs' for transporting and storing fresh fishery products. EFSA Journal, 2020, 18, e06091.	0.9	5
36	Pathogenicity assessment of Shiga toxinâ€producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA Journal, 2020, 18, e05967.	0.9	111

#	Article	IF	CITATIONS
37	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 12: suitability of taxonomic units notified to EFSA until March 2020. EFSA Journal, 2020, 18, e06174.	0.9	76
38	Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics. MSystems, 2020, 5, .	1.7	18
39	The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA Journal, 2020, 18, e06092.	0.9	24
40	Selection for Antimicrobial Resistance in Foodborne Pathogens through Exposure to UV Light and Nonthermal Atmospheric Plasma Decontamination Techniques. Applied and Environmental Microbiology, 2020, 86, .	1.4	17
41	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 11: suitability of taxonomic units notified to EFSA until September 2019. EFSA Journal, 2020, 18, e05965.	0.9	34
42	Scientific Opinion on the update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA Journal, 2020, 18, e05966.	0.9	178
43	ldentification of risk factors and hotspots of antibiotic resistance along the food chain using nextâ€generation sequencing. EFSA Journal, 2020, 18, e181107.	0.9	6
44	BiopelÃculas y persistencia microbiana en la industria alimentaria. Arbor, 2020, 196, 538.	0.1	0
45	Evaluation of public and animal health risks in case of a delayed postâ€mortem inspection in ungulates. EFSA Journal, 2020, 18, e06307.	0.9	6
46	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 10: Suitability of taxonomic units notified to EFSA until March 2019. EFSA Journal, 2019, 17, e05753.	0.9	37
47	A European questionnaire-based study on population awareness and risk perception of antimicrobial resistance. FEMS Microbiology Letters, 2019, 366, .	0.7	3
48	Production of Antibacterial Coatings Through Atmospheric Pressure Plasma: a Promising Alternative for Combatting Biofilms in the Food Industry. Food and Bioprocess Technology, 2019, 12, 1251-1263.	2.6	27
49	#EUROmicroMOOC: using Twitter to share trends in Microbiology worldwide. FEMS Microbiology Letters, 2019, 366, .	0.7	7
50	A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Frontiers in Microbiology, 2019, 10, 622.	1.5	155
51	Salmonella control in poultry flocks and its public health impact. EFSA Journal, 2019, 17, e05596.	0.9	93
52	Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of foodâ€borne microorganisms. EFSA Journal, 2019, 17, e05898.	0.9	83
53	Update on chronic wasting disease (CWD) III. EFSA Journal, 2019, 17, e05863.	0.9	28
54	Biofilms in Food Processing Environments: Challenges and Opportunities. Annual Review of Food Science and Technology, 2019, 10, 173-195.	5.1	120

#	Article	IF	CITATIONS
55	Molecular epidemiology and antimicrobial resistance mechanisms of <i>Campylobacter coli</i> from diarrhoeal patients and broiler carcasses in Belgium. Transboundary and Emerging Diseases, 2019, 66, 463-475.	1.3	28
56	Food processing as a risk factor for antimicrobial resistance spread along the food chain. Current Opinion in Food Science, 2019, 30, 21-26.	4.1	77
57	Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness. International Journal of Food Microbiology, 2018, 275, 66-75.	2.1	17
58	Influence of acid and low-temperature adaptation on pulsed electric fields resistance of Enterococcus faecium in media of different pH. Innovative Food Science and Emerging Technologies, 2018, 45, 382-389.	2.7	10
59	Hazard analysis approaches for certain small retail establishments and food donations: second scientific opinion. EFSA Journal, 2018, 16, e05432.	0.9	5
60	Public health risks associated with foodâ€borne parasites. EFSA Journal, 2018, 16, e05495.	0.9	61
61	Evaluation of ultraviolet light (UV), non-thermal atmospheric plasma (NTAP) and their combination for the control of foodborne pathogens in smoked salmon and their effect on quality attributes. Innovative Food Science and Emerging Technologies, 2018, 50, 84-93.	2.7	29
62	Challenge Studies to Determine the Ability of Foods to Support the Growth of Listeria monocytogenes. Pathogens, 2018, 7, 80.	1.2	8
63	Production of safer food by understanding risk factors for <i>L. monocytogenes</i> occurrence and persistence in food processing environments. Journal of Food Safety, 2018, 38, e12516.	1.1	10
64	A Systematic Review of Bacterial Foodborne Outbreaks Related to Red Meat and Meat Products. Foodborne Pathogens and Disease, 2018, 15, 598-611.	0.8	84
65	Genetic Basis and Clonal Population Structure of Antibiotic Resistance in Campylobacter jejuni Isolated From Broiler Carcasses in Belgium. Frontiers in Microbiology, 2018, 9, 1014.	1.5	45
66	The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes, 2018, 9, 268.	1.0	99
67	A 3-year multi-food study of the presence and persistence of Listeria monocytogenes in 54 small food businesses in Ireland. International Journal of Food Microbiology, 2017, 249, 18-26.	2.1	62
68	Stress adaptation has a minor impact on the effectivity of Non-Thermal Atmospheric Plasma (NTAP) against Salmonella spp Food Research International, 2017, 102, 519-525.	2.9	19
69	Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Annals of Clinical Microbiology and Antimicrobials, 2017, 16, 35.	1.7	38
70	The Role of the Food Chain in the Spread of Antimicrobial Resistance (AMR). , 2017, , 23-47.		9
71	Editorial: Industrial and Host Associated Stress Responses in Food Microbes. Implications for Food Technology and Food Safety. Frontiers in Microbiology, 2017, 8, 1522.	1.5	6
72	Editorial: About the Foodborne Pathogen Campylobacter. Frontiers in Microbiology, 2017, 8, 1908.	1.5	39

#	Article	IF	CITATIONS
73	Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions. Frontiers in Microbiology, 2016, 7, 322.	1.5	11
74	New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Frontiers in Microbiology, 2016, 7, 1641.	1.5	210
75	Editorial: Biofilms from a Food Microbiology Perspective: Structures, Functions, and Control Strategies. Frontiers in Microbiology, 2016, 7, 1938.	1.5	6
76	Comparison of methods for the identification and sub-typing of O157 and non-O157 Escherichia coli serotypes and their integration into a polyphasic taxonomy approach. Irish Journal of Agricultural and Food Research, 2016, 55, 81-90.	0.2	1
77	RpoS loss in Cronobacter sakazakii by propagation in the presence of non-preferred carbon sources. International Dairy Journal, 2016, 57, 29-33.	1.5	2
78	Validation of a Loop-Mediated Amplification/ISO 6579-Based Method for Analysing Soya Meal for the Presence of Salmonella enterica. Food Analytical Methods, 2016, 9, 2979-2985.	1.3	19
79	Influence of processing parameters and stress adaptation on the inactivation of Listeria monocytogenes by Non-Thermal Atmospheric Plasma (NTAP). Food Research International, 2016, 89, 631-637.	2.9	34
80	Variability in resistance to Cold Atmospheric Plasma (CAP) and Ultraviolet light (UV) and multiple stress resistance analysis of pathogenic verocytotoxigenic Escherichia coli (VTEC). Food Research International, 2016, 79, 88-94.	2.9	6
81	Dynamics of Listeria monocytogenes colonisation in a newly-opened meat processing facility. Meat Science, 2016, 113, 26-34.	2.7	33
82	Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Frontiers in Microbiology, 2015, 6, 672.	1.5	83
83	Occurrence, Persistence, and Virulence Potential of <i>Listeria ivanovii</i> in Foods and Food Processing Environments in the Republic of Ireland. BioMed Research International, 2015, 2015, 1-10.	0.9	20
84	Epidemiology, Detection, and Control of Foodborne Microbial Pathogens. BioMed Research International, 2015, 2015, 1-2.	0.9	7
85	A note on challenge trials to determine the growth of Listeria monocytogenes on mushrooms (Agaricus bisporus). Irish Journal of Agricultural and Food Research, 2015, 54, 121-125.	0.2	8
86	Putative Cross-Contamination Routes of Listeria monocytogenes in a Meat Processing Facility in Romania. Journal of Food Protection, 2015, 78, 1664-1674.	0.8	29
87	Survival of foodborne pathogens during frozen storage of cheese made from artificially inoculated milk. Dairy Science and Technology, 2015, 95, 759-767.	2.2	5
88	Examination of Listeria monocytogenes in Seafood Processing Facilities and Smoked Salmon in the Republic of Ireland. Journal of Food Protection, 2015, 78, 2184-2190.	0.8	30
89	Heat resistance of Cronobacter sakazakii DPC 6529 and its behavior in reconstituted powdered infant formula. Food Research International, 2015, 69, 401-409.	2.9	24
90	The challenge of challenge testing to monitor Listeria monocytogenes growth on ready-to-eat foods in Europe by following the European Commission (2014) Technical Guidance document. Food Research International, 2015, 75, 233-243.	2.9	54

#	Article	IF	CITATIONS
91	Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat. Meat Science, 2015, 108, 115-119.	2.7	15
92	The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. International Journal of Food Microbiology, 2015, 213, 99-109.	2.1	105
93	23. Cronobacter spp. and infant formula. Human Health Handbooks, 2014, , 373-392.	0.1	2
94	Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques. Molecules, 2014, 19, 21310-21323.	1.7	27
95	Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Frontiers in Microbiology, 2014, 5, 436.	1.5	118
96	Effect of logistic slaughter on Salmonella contamination on pig carcasses. Food Research International, 2014, 55, 77-82.	2.9	14
97	Investigation of the Antimicrobial Activity of Bacillus licheniformis Strains Isolated from Retail Powdered Infant Milk Formulae. Probiotics and Antimicrobial Proteins, 2014, 6, 32-40.	1.9	12
98	Transposon mutagenesis reveals genes involved in osmotic stress and drying in Cronobacter sakazakii. Food Research International, 2014, 55, 45-54.	2.9	35
99	Acid stress management by Cronobacter sakazakii. International Journal of Food Microbiology, 2014, 178, 21-28.	2.1	45
100	Antibacterial activity and mode of action of a commercial citrus fruit extract. Journal of Applied Microbiology, 2013, 115, 50-60.	1.4	40
101	Heterogeneity in resistance to food-related stresses and biofilm formation ability among verocytotoxigenic Escherichia coli strains. International Journal of Food Microbiology, 2013, 161, 220-230.	2.1	49
102	Role of Slaughtering in Salmonella Spreading and Control in Pork Production. Journal of Food Protection, 2013, 76, 899-911.	0.8	83
103	Selection for Loss of RpoS in Cronobacter sakazakii by Growth in the Presence of Acetate as a Carbon Source. Applied and Environmental Microbiology, 2013, 79, 2099-2102.	1.4	15
104	Structure-Activity Relationship of Synthetic Variants of the Milk-Derived Antimicrobial Peptide α _{s2} -Casein f(183–207). Applied and Environmental Microbiology, 2013, 79, 5179-5185.	1.4	33
105	Survival of acid adapted and non-acid adapted <i>Salmonella</i> Typhimurium in pasteurized orange juice and yogurt under different storage temperatures. Food Science and Technology International, 2013, 19, 407-414.	1.1	23
106	Determination of Listeria monocytogenes Growth during Mushroom Production and Distribution. Foods, 2013, 2, 544-553.	1.9	14
107	Swine Dysentery: Aetiology, Pathogenicity, Determinants of Transmission and the Fight against the Disease. International Journal of Environmental Research and Public Health, 2013, 10, 1927-1947.	1.2	80
108	Fourier Transform Infrared Spectroscopy in Food Microbiology. SpringerBriefs in Food, Health and Nutrition, 2012, , .	0.5	18

#	Article	IF	CITATIONS
109	The Acid Tolerance Response of Salmonella spp.: An adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Research International, 2012, 45, 482-492.	2.9	92
110	Polymorphisms in <i>rpoS</i> and Stress Tolerance Heterogeneity in Natural Isolates of Cronobacter sakazakii. Applied and Environmental Microbiology, 2012, 78, 3975-3984.	1.4	42
111	Fourier Transform Spectroscopy and the Study of the Microbial Response to Stress. SpringerBriefs in Food, Health and Nutrition, 2012, , 23-30.	0.5	0
112	Conclusions and Future Prospects. SpringerBriefs in Food, Health and Nutrition, 2012, , 35-44.	0.5	0
113	Fourier Transform Infrared Spectroscopy to Assist in Taxonomy and Identification of Foodborne Microorganisms. SpringerBriefs in Food, Health and Nutrition, 2012, , 19-21.	0.5	0
114	Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. Journal of Microbiological Methods, 2011, 84, 369-378.	0.7	145
115	EFFICACY OF TRISODIUM PHOSPHATE IN KILLING ACIDâ€ADAPTED <i>SALMONELLA</i> TYPHIMURIUM. Journal of Food Safety, 2011, 31, 250-256.	1.1	5
116	Applying Fourier-transform infrared spectroscopy and chemometrics to the characterization and identification of lactic acid bacteria. Vibrational Spectroscopy, 2011, 56, 193-201.	1.2	44
117	Salmonella spp. survival strategies within the host gastrointestinal tract. Microbiology (United) Tj ETQq1 1 0.784	314.rgBT / 0.7	Oygrlock 10
118	Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiology, 2010, 27, 44-49.	2.1	81
119	Arginine and lysine decarboxylases and the Acid Tolerance Response of Salmonella Typhimurium. International Journal of Food Microbiology, 2010, 136, 278-282.	2.1	79
120	Changes in Fourier transform infrared spectra of Salmonella enterica serovars Typhimurium and Enteritidis after adaptation to stressful growth conditions. International Journal of Food Microbiology, 2010, 142, 97-105.	2.1	56
121	Changes in Ultrastructure and Fourier Transform Infrared Spectrum of <i>Salmonella enterica</i> Serovar Typhimurium Cells after Exposure to Stress Conditions. Applied and Environmental Microbiology, 2010, 76, 7598-7607.	1.4	34
122	A Comparative Study of Thermal and Acid Inactivation Kinetics in Fruit Juices of <i>Salmonella enterica</i> Serovar Typhimurium and <i>Salmonella enterica</i> Serovar Senftenberg Grown at Acidic Conditions. Foodborne Pathogens and Disease, 2009, 6, 1147-1155.	0.8	38
123	Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384. Food Microbiology, 2009, 26, 347-353.	2.1	76
124	Effects of organic acids on thermal inactivation of acid and cold stressed Enterococcus faecium. Food Microbiology, 2009, 26, 497-503.	2.1	30
125	HEATâ€RESISTANCE PREDICTION OF <i>LISTERIA INNOCUA</i> GROWN AT DIFFERENT TEMPERATURES. Journal of Food Safety, 2009, 29, 474-483.	1.1	9
126	Comparison of acids on the induction of an Acid Tolerance Response in Salmonella typhimurium, consequences for food safety. Meat Science, 2009, 81, 65-70.	2.7	70

#	Article	IF	CITATIONS
127	Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. International Journal of Food Microbiology, 2008, 123, 212-219.	2.1	170