Berit Lokensgard Strand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7157750/publications.pdf

Version: 2024-02-01

57 papers

4,557 citations

147566 31 h-index 57 g-index

58 all docs

58 docs citations

58 times ranked 5195 citing authors

#	Article	IF	CITATIONS
1	Pericapsular fibrotic overgrowth mitigated in immunocompetent mice through microbead formulations based on sulfated or intermediate G alginates. Acta Biomaterialia, 2022, 137, 172-185.	4.1	6
2	High resolution imaging of soft alginate hydrogels by atomic force microscopy. Carbohydrate Polymers, 2022, 276, 118804.	5.1	12
3	Click chemistry for block polysaccharides with dihydrazide and dioxyamine linkers - A review. Carbohydrate Polymers, 2022, 278, 118840.	5.1	7
4	Alginate and tunicate nanocellulose composite microbeads $\hat{a} \in \text{``Preparation, characterization and cell encapsulation. Carbohydrate Polymers, 2022, 286, 119284.}$	5.1	6
5	Alginate hydrogels functionalized with βâ€cyclodextrin as a local paclitaxel delivery system. Journal of Biomedical Materials Research - Part A, 2021, 109, 2625-2639.	2.1	18
6	Sulfated Alginate Reduces Pericapsular Fibrotic Overgrowth on Encapsulated cGMP-Compliant hPSC-Hepatocytes in Mice. Frontiers in Bioengineering and Biotechnology, 2021, 9, 816542.	2.0	7
7	Injectable Gel Form of a Decellularized Bladder Induces Adipose-Derived Stem Cell Differentiation into Smooth Muscle Cells In Vitro. International Journal of Molecular Sciences, 2020, 21, 8608.	1.8	18
8	Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Scientific Reports, 2020, 10, 414.	1.6	33
9	Efficient Grafting of Cyclodextrin to Alginate and Performance of the Hydrogel for Release of Model Drug. Scientific Reports, 2019, 9, 9325.	1.6	32
10	Formation of Hydroxyapatite via Transformation of Amorphous Calcium Phosphate in the Presence of Alginate Additives. Crystal Growth and Design, 2019, 19, 7077-7087.	1.4	22
11	Mechanical Properties of Ca-Saturated Hydrogels with Functionalized Alginate. Gels, 2019, 5, 23.	2.1	23
12	Viscoelastic properties of nanocellulose based inks for 3D printing and mechanical properties of CNF/alginate biocomposite gels. Cellulose, 2019, 26, 581-595.	2.4	77
13	Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nature Biomedical Engineering, 2018, 2, 810-821.	11.6	242
14	Transformation of brushite to hydroxyapatite and effects of alginate additives. Journal of Crystal Growth, 2017, 468, 774-780.	0.7	19
15	Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet. Stem Cells Translational Medicine, 2017, 6, 1053-1058.	1.6	95
16	Mechanical Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils. Polymers, 2017, 9, 378.	2.0	74
17	Gelling kinetics and in situ mineralization of alginate hydrogels: A correlative spatiotemporal characterization toolbox. Acta Biomaterialia, 2016, 44, 243-253.	4.1	27
18	A correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix. Acta Biomaterialia, 2016, 44, 254-266.	4.1	25

#	Article	IF	Citations
19	Efficient functionalization of alginate biomaterials. Biomaterials, 2016, 80, 146-156.	5.7	108
20	Culture of hESCâ€derived pancreatic progenitors in alginateâ€based scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 3717-3726.	2.1	19
21	Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices. PLoS ONE, 2015, 10, e0120374.	1.1	85
22	Nucleation and Growth of Brushite in the Presence of Alginate. Crystal Growth and Design, 2015, 15, 5397-5405.	1.4	20
23	RGDâ€peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 896-906.	2.1	62
24	Lyase-catalyzed degradation of alginate in the gelled state: Effect of gelling ions and lyase specificity. Carbohydrate Polymers, 2014, 110, 100-106.	5.1	29
25	Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Advanced Drug Delivery Reviews, 2014, 67-68, 111-130.	6.6	129
26	Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia, 2013, 56, 1605-1614.	2.9	190
27	Analysis of G-Block Distributions and Their Impact on Gel Properties of in Vitro Epimerized Mannuronan. Biomacromolecules, 2013, 14, 3409-3416.	2.6	48
28	The induction of cytokines by polycation containing microspheres by a complement dependent mechanism. Biomaterials, 2013, 34, 621-630.	5.7	35
29	Biocomposites prepared by alkaline phosphatase mediated mineralization of alginate microbeads. RSC Advances, 2012, 2, 1457-1465.	1.7	24
30	Survival of human islets in microbeads containing high guluronic acid alginate crosslinked with Ca ²⁺ and Ba ²⁺ . Xenotransplantation, 2012, 19, 355-364.	1.6	45
31	Binding and leakage of barium in alginate microbeads. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2939-2947.	2.1	69
32	Viscoelastic properties of mineralized alginate hydrogel beads. Journal of Materials Science: Materials in Medicine, 2012, 23, 1619-1627.	1.7	26
33	Polymorph Switching in the Calcium Carbonate System by Well-Defined Alginate Oligomers. Crystal Growth and Design, 2011, 11, 520-529.	1.4	18
34	A Recommended Laparoscopic Procedure for Implantation of Microcapsules in the Peritoneal Cavity of Non-Human Primates. Journal of Surgical Research, 2011, 168, e117-e123.	0.8	23
35	Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomaterialia, 2011, 7, 2566-2578.	4.1	91
36	Alginates as biomaterials in tissue engineering. Carbohydrate Chemistry, 2011, , 227-258.	0.3	132

#	Article	IF	Citations
37	Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks. Acta Biomaterialia, 2010, 6, 3665-3675.	4.1	68
38	Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials, 2009, 30, 2559-2570.	5.7	198
39	Effect of Elongation of Alternating Sequences on Swelling Behavior and Large Deformation Properties of Natural Alginate Gels. Journal of Physical Chemistry B, 2009, 113, 12916-12922.	1.2	50
40	Growth and Nucleation of Calcium Carbonate Vaterite Crystals in Presence of Alginate. Crystal Growth and Design, 2009, 9, 5176-5183.	1.4	45
41	Alginate/lactoseâ€modified chitosan hydrogels: A bioactive biomaterial for chondrocyte encapsulation. Journal of Biomedical Materials Research - Part A, 2008, 84A, 364-376.	2.1	103
42	Encapsulation of Human Islets in Novel Inhomogeneous Alginate-Ca2+/Ba2+Microbeads:In VitroandIn VivoFunction. Artificial Cells, Blood Substitutes, and Biotechnology, 2008, 36, 403-420.	0.9	74
43	Mechanical Properties of C-5 Epimerized Alginates. Biomacromolecules, 2008, 9, 2360-2368.	2.6	64
44	Molecular Engineering as an Approach to Design New Functional Properties of Alginate. Biomacromolecules, 2007, 8, 2809-2814.	2.6	101
45	Relationship between energetic stress and pro-apoptotic/cytoprotective kinase mechanisms in intestinal preservation. Surgery, 2007, 141, 795-803.	1.0	15
46	Effect of Ca2+, Ba2+, and Sr2+ on Alginate Microbeads. Biomacromolecules, 2006, 7, 1471-1480.	2.6	696
47	Cell-compatible covalently reinforced beads obtained from a chemoenzymatically engineered alginate. Biomaterials, 2006, 27, 4726-4737.	5.7	61
48	Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials, 2006, 27, 5603-5617.	5.7	467
49	Microcapsule Formulation and Formation. Focus on Biotechnology, 2004, , 165-183.	0.4	11
50	Microcapsules made by enzymatically tailored alginate. Journal of Biomedical Materials Research - Part A, 2003, 64A, 540-550.	2.1	65
51	Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnology and Bioengineering, 2003, 82, 386-394.	1.7	130
52	Evaluation of Different Types of Alginate Microcapsules as Bioreactors for Producing Endostatin. Cell Transplantation, 2003, 12, 351-364.	1.2	26
53	The role of capsule composition and biologic responses in the function of transplanted microencapsulated islets of langerhans1. Transplantation, 2003, 76, 275-279.	0.5	21
54	Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties. Journal of Microencapsulation, 2002, 19, 615-630.	1.2	134

#	Article	IF	CITATIONS
55	Poly-L-Lysine Induces Fibrosis on Alginate Microcapsules via the Induction of Cytokines. Cell Transplantation, 2001, 10, 263-275.	1.2	228
56	Transplantation of Alginate Microcapsules with Proliferating Cells in Mice. Annals of the New York Academy of Sciences, 2001, 944, 216-225.	1.8	18
57	lonic and acid gel formation of epimerised alginates; the effect of AlgE4. International Journal of Biological Macromolecules, 2000, 27, 117-122.	3.6	85