Timothy Ravasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7157479/publications.pdf

Version: 2024-02-01

150 22,068 53 143 papers citations h-index g-index

161 161 33041 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Plasticity to ocean warming is influenced by transgenerational, reproductive, and developmental exposure in a coral reef fish. Evolutionary Applications, 2022, 15, 249-261.	3.1	16
2	A chromosome-scale genome assembly of the false clownfish, <i>Amphiprion ocellaris</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
3	Molecular Response of the Brain to Cross-Generational Warming in a Coral Reef Fish. Frontiers in Marine Science, 2022, 9, .	2.5	6
4	The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecology and Evolution, 2022, 12, e8738.	1.9	3
5	Rapid evolution fuels transcriptional plasticity to ocean acidification. Global Change Biology, 2022, 28, 3007-3022.	9.5	23
6	Parents exposed to warming produce offspring lower in weight and condition. Ecology and Evolution, 2022, 12, .	1.9	6
7	Unexpected high abundance of aragonite-forming Nanipora (Octocorallia: Helioporacea) at an acidified volcanic reef in southern Japan. Marine Biodiversity, 2021, 51, 1.	1.0	8
8	Diel <i>p</i> CO ₂ fluctuations alter the molecular response of coral reef fishes to ocean acidification conditions. Molecular Ecology, 2021, 30, 5105-5118.	3.9	21
9	Sex―and timeâ€specific parental effects of warming on reproduction and offspring quality in a coral reef fish. Evolutionary Applications, 2021, 14, 1145-1158.	3.1	15
10	Molecular basis of parental contributions to the behavioural tolerance of elevated pCO ₂ in a coral reef fish. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211931.	2.6	9
11	Viral ecogenomics across the Porifera. Microbiome, 2020, 8, 144.	11.1	21
12	Methods matter in repeating ocean acidification studies. Nature, 2020, 586, E20-E24.	27.8	41
13	Functionalization of Magnetic Nanowires for Active Targeting and Enhanced Cell-Killing Efficacy. ACS Applied Bio Materials, 2020, 3, 4789-4797.	4.6	16
14	Probing SWATHâ€MS as a tool for proteome level quantification in a nonmodel fish. Molecular Ecology Resources, 2020, 20, 1647-1657.	4.8	9
15	Proteomic Responses to Ocean Acidification in the Brain of Juvenile Coral Reef Fish. Frontiers in Marine Science, 2020, 7, .	2.5	15
16	Symbiodiniaceae diversity of Palythoa tuberculosa in the central and southern Red Sea influenced by environmental factors. Coral Reefs, 2020, 39, 1619-1633.	2.2	2
17	An Epigenetic Signature for Within-Generational Plasticity of a Reef Fish to Ocean Warming. Frontiers in Marine Science, 2020, 7, .	2.5	31
18	Magnetic core–shell nanowires as MRI contrast agents for cell tracking. Journal of Nanobiotechnology, 2020, 18, 42.	9.1	26

#	Article	IF	CITATIONS
19	Species-specific molecular responses of wild coral reef fishes during a marine heatwave. Science Advances, 2020, 6, eaay3423.	10.3	52
20	Testing the Adaptive Potential of Yellowtail Kingfish to Ocean Warming and Acidification. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	11
21	Nuclear AGO1 Regulates Gene Expression by Affecting Chromatin Architecture in Human Cells. Cell Systems, 2019, 9, 446-458.e6.	6.2	27
22	Iron-Based Core–Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 43976-43988.	8.0	38
23	A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nature Microbiology, 2019, 4, 2090-2100.	13.3	160
24	Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180174.	4.0	371
25	Neural effects of elevated CO2 in fish may be amplified by a vicious cycle., 2019, 7, coz100.		29
26	Finding Nemo's Genes: A chromosomeâ€scale reference assembly of the genome of the orange clownfish <i>Amphiprion percula </i> . Molecular Ecology Resources, 2019, 19, 570-585.	4.8	55
27	Biofunctionalizing Magnetic Nanowires Toward Targeting and Killing Leukemia Cancer Cells. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	15
28	Unusual bilateral color pattern in a regal angelfish from the Red Sea. Bulletin of Marine Science, 2019, 95, 113-114.	0.8	0
29	Transcription Regulatory Networks Analysis Using CAGE. , 2019, , 153-168.		0
30	An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nature Ecology and Evolution, 2018, 2, 334-342.	7.8	75
31	The epigenetic landscape of transgenerational acclimation to ocean warming. Nature Climate Change, 2018, 8, 504-509.	18.8	124
32	Molecular Response to Extreme Summer Temperatures Differs Between Two Genetically Differentiated Populations of a Coral Reef Fish. Frontiers in Marine Science, 2018, 5, .	2.5	29
33	Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Molecular Ecology, 2018, 27, 4516-4528.	3.9	37
34	Review of In vitro Toxicity of Nanoparticles and Nanorods: Part 1., 2018, , .		0
35	Inductively actuated micro needles for on-demand intracellular delivery. Scientific Reports, 2018, 8, 9918.	3.3	8
36	Morphological characterization of virus-like particles in coral reef sponges. PeerJ, 2018, 6, e5625.	2.0	27

3

#	Article	IF	CITATIONS
37	Mesenchymal stem cells cultured on magnetic nanowire substrates. Nanotechnology, 2017, 28, 055703.	2.6	12
38	The sponge microbiome project. GigaScience, 2017, 6, 1-7.	6.4	193
39	Rapid adaptive responses to climate change in corals. Nature Climate Change, 2017, 7, 627-636.	18.8	327
40	Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro. Journal of Neuroinflammation, 2017, 14, 49.	7.2	34
41	Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS ONE, 2017, 12, e0177316.	2.5	20
42	Transcriptome and Proteome Studies Reveal Candidate Attachment Genes during the Development of the Barnacle Amphibalanus Amphitrite. Frontiers in Marine Science, 2016, 3, .	2.5	12
43	Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 2016, 6, 39734.	3.3	303
44	Semi-automated quantification of living cells with internalized nanostructures. Journal of Nanobiotechnology, 2016, 14, 4.	9.1	15
45	Molecular signatures of transgenerational response to ocean acidification in a species of reefÂfish. Nature Climate Change, 2016, 6, 1014-1018.	18.8	103
46	Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Scientific Reports, 2016, 6, 35860.	3.3	31
47	Characterization of piRNAs across postnatal development in mouse brain. Scientific Reports, 2016, 6, 25039.	3.3	34
48	Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. Scientific Reports, 2016, 6, 35786.	3.3	62
49	Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis. Scientific Reports, 2016, 6, 35461.	3.3	88
50	Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors. Global Change Biology, 2016, 22, 2054-2068.	9.5	70
51	Cytotoxic effects of nickel nanowires in human fibroblasts. Toxicology Reports, 2016, 3, 373-380.	3.3	34
52	Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics, 2016, 17, 158.	2.8	60
53	Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets. BMC Immunology, 2016, 17, 7.	2.2	53
54	Cytotoxicity and intracellular dissolution of nickel nanowires. Nanotoxicology, 2016, 10, 871-880.	3.0	28

#	Article	IF	Citations
55	Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen. Methods in Molecular Biology, 2016, 1390, 145-158.	0.9	6
56	miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria. PLoS ONE, 2016, 11, e0149080.	2.5	12
57	Transcriptome and proteome dynamics in larvae of the barnacle Balanus Amphitrite from the Red Sea. BMC Genomics, 2015, 16, 1063.	2.8	18
58	Exploring seascape genetics and kinship in the reef sponge S tylissa carteri in the R ed S ea. Ecology and Evolution, 2015, 5, 2487-2502.	1.9	64
59	Proteomic Changes Associated with Successive Reproductive Periods in Male Polychaetous Neanthes arenaceodentata. Scientific Reports, 2015, 5, 13561.	3.3	2
60	Highlighting nonlinear patterns in population genetics datasets. Scientific Reports, 2015, 5, 8140.	3.3	31
61	Selective phosphorylation during early macrophage differentiation. Proteomics, 2015, 15, 3731-3743.	2.2	6
62	The ReFuGe 2020 Consortiumâ€"using "omics―approaches to explore the adaptability and resilience of coral holobionts to environmental change. Frontiers in Marine Science, 2015, 2, .	2.5	24
63	Non-chemotoxic induction of cancer cell death using magnetic nanowires. International Journal of Nanomedicine, 2015, 10, 2141.	6.7	90
64	Magnetic nanowires and hyperthermia: How geometry and material affect heat production efficiency. , 2015, , .		1
65	Molecular processes of transgenerational acclimation to a warming ocean. Nature Climate Change, 2015, 5, 1074-1078.	18.8	128
66	The coâ€transcriptome of uropathogenic <scp><i>E</i></scp> <i>scherichia coli</i> â€infected mouse macrophages reveals new insights into hostâ€"pathogen interactions. Cellular Microbiology, 2015, 17, 730-746.	2.1	90
67	Quantitative Proteomics Study of Larval Settlement in the Barnacle Balanus amphitrite. PLoS ONE, 2014, 9, e88744.	2.5	35
68	Dynamic Epigenetic Control of Highly Conserved Noncoding Elements. PLoS ONE, 2014, 9, e109326.	2.5	5
69	Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity. Marine Drugs, 2014, 12, 2771-2789.	4.6	72
70	Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium <i>Actinokineospora</i> sp. Strain EG49. Genome Announcements, 2014, 2, .	0.8	15
71	The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 2014, 105, 1-18.	2.4	96
72	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838

#	Article	IF	CITATIONS
73	Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Molecular Ecology, 2014, 23, 1348-1363.	3.9	139
74	GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high) Tj ETQq0 0 0 rgBT 832-843.	/Overlock 2.7	10 Tf 50 70 55
75	Targeted cancer cell death induced by biofunctionalized magnetic nanowires. , 2014, , .		3
76	Exploring the genetics underlying autoimmune diseases with network analysis and link prediction. , 2014, , .		2
77	Revealing microbial functional activities in the <scp>R</scp> ed <scp>S</scp> ea sponge <scp><i>S</i></scp> <i>total distribution of the company of the company</i>	3.8	64
78	Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete <i>Hydroides elegans</i> Biofouling, 2014, 30, 921-928.	2.2	2
79	Proteomics insights: proteins related to larval attachment and metamorphosis of marine invertebrates. Frontiers in Marine Science, 2014, 1 , .	2.5	10
80	Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. Scientific Reports, 2014, 4, 6534.	3.3	19
81	Proteomic and metabolomic profiles of marine <i>Vibrio</i> sp. 010 in response to an antifoulant challenge. Biofouling, 2013, 29, 789-802.	2.2	8
82	Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies. BMC Medical Genomics, 2013, 6, 5.	1.5	33
83	Novel polymorphic microsatellite markers developed for a common reef sponge, Stylissa carteri. Marine Biodiversity, 2013, 43, 237-241.	1.0	9
84	Exploitation of genetic interaction network topology for the prediction of epistatic behavior. Genomics, 2013, 102, 202-208.	2.9	17
85	Transcriptome and Quantitative Proteome Analysis Reveals Molecular Processes Associated with Larval Metamorphosis in the Polychaete Pseudopolydora vexillosa. Journal of Proteome Research, 2013, 12, 1344-1358.	3.7	13
86	Bacterial community profiles in low microbial abundance sponges. FEMS Microbiology Ecology, 2013, 83, 232-241.	2.7	127
87	From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks. Scientific Reports, 2013, 3, 1613.	3.3	311
88	Poster: Observing change in crowded data sets in 3D space - Visualizing gene expression in human tissues. , 2013, , .		0
89	Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics, 2013, 29, i199-i209.	4.1	93
90	Questing for Circadian Dependence in ST-Segment–Elevation Acute Myocardial Infarction. Circulation Research, 2013, 112, e110-4.	4.5	35

#	Article	IF	Citations
91	Proteomic Changes between Male and Female Worms of the Polychaetous Annelid Neanthes arenaceodentata before and after Spawning. PLoS ONE, 2013, 8, e72990.	2.5	4
92	Identification and Predictive Value of Interleukin-6 ⁺ Interleukin-10 ⁺ and Interleukin-6 ^{\$a^3} Interleukin-10 ⁺ Cytokine Patterns in ST-Elevation Acute Myocardial Infarction. Circulation Research, 2012, 111, 1336-1348.	4.5	72
93	First Proteome of the Egg Perivitelline Fluid of a Freshwater Gastropod with Aerial Oviposition. Journal of Proteome Research, 2012, 11, 4240-4248.	3.7	54
94	Defining the protein interaction network of human malaria parasite Plasmodium falciparum. Genomics, 2012, 99, 69-75.	2.9	28
95	The evolution of ultraconserved elements with different phylogenetic origins. BMC Evolutionary Biology, 2012, 12, 236.	3.2	22
96	Involvement of Wnt Signaling Pathways in the Metamorphosis of the Bryozoan Bugula neritina. PLoS ONE, 2012, 7, e33323.	2.5	21
97	SECOM: A Novel Hash Seed and Community Detection Based-Approach for Genome-Scale Protein Domain Identification. PLoS ONE, 2012, 7, e39475.	2.5	15
98	Computational Tools for Genome-Wide miRNA Prediction and Study. The Open Biology Journal, 2012, 5, 23-30.	0.5	3
99	Intramacrophage survival of uropathogenic Escherichia coli: Differences between diverse clinical isolates and between mouse and human macrophages. Immunobiology, 2011, 216, 1164-1171.	1.9	61
100	Quantitative Proteomics Identify Molecular Targets That Are Crucial in Larval Settlement and Metamorphosis of <i>Bugula neritina </i> . Journal of Proteome Research, 2011, 10, 349-360.	3.7	22
101	Unexpected complexity of the Reef-Building Coral Acropora millepora transcription factor network. BMC Systems Biology, 2011, 5, 58.	3.0	9
102	Novel systems biology insights using antifibrotic approaches for diabetic kidney disease. Expert Review of Endocrinology and Metabolism, 2010, 5 , $127-135$.	2.4	1
103	Dependency on de novo protein synthesis and proteomic changes during metamorphosis of the marine bryozoan Bugula neritina. Proteome Science, 2010, 8, 25.	1.7	15
104	Rapid transcriptome and proteome profiling of a nonâ€model marine invertebrate, <i>Bugula neritina</i> . Proteomics, 2010, 10, 2972-2981.	2.2	46
105	Study of monocyte membrane proteome perturbation during lipopolysaccharideâ€nduced tolerance using iTRAQâ€based quantitative proteomic approach. Proteomics, 2010, 10, 2780-2789.	2.2	45
106	Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes. Bioinformatics, 2010, 26, i531-i539.	4.1	61
107	Coevolution within a transcriptional network by compensatory <i>trans</i> and <i>cis</i> mutations. Genome Research, 2010, 20, 1672-1678.	5.5	62
108	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 140, 744-752.	28.9	667

#	Article	IF	Citations
109	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 141, 369.	28.9	4
110	Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering. Genome Biology, 2010, 11, R77.	9.6	38
111	An Integrated Systems Analysis Implicates EGR1 Downregulation in Simian Immunodeficiency Virus Encephalitis-Induced Neural Dysfunction. Journal of Neuroscience, 2009, 29, 12467-12476.	3.6	37
112	Pirfenidone Is Renoprotective in Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2009, 20, 1765-1775.	6.1	147
113	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
114	Transcription Regulatory Networks Analysis Using CAGE., 2009, , 153-168.		0
115	Integrative Systems Approaches to Study Innate Immunity. , 2009, , 1-13.		0
116	Integrated approaches to uncovering transcription regulatory networks in mammalian cells. Genomics, 2008, 91, 219-231.	2.9	38
117	A systems approach to delineate functions of paralogous transcription factors: Role of the Yap family in the DNA damage response. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2934-2939.	7.1	55
118	<i>Gpnmb</i> Is Induced in Macrophages by IFN- \hat{I}^3 and Lipopolysaccharide and Acts as a Feedback Regulator of Proinflammatory Responses. Journal of Immunology, 2007, 178, 6557-6566.	0.8	191
119	Differential Effects of CpG DNA on IFN- \hat{l}^2 Induction and STAT1 Activation in Murine Macrophages versus Dendritic Cells: Alternatively Activated STAT1 Negatively Regulates TLR Signaling in Macrophages. Journal of Immunology, 2007, 179, 3495-3503.	0.8	44
120	Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. Journal of Leukocyte Biology, 2007, 82, 111-123.	3.3	155
121	PU.1 and ICSBP control constitutive and IFN- \hat{I}^3 -regulated Tlr9 gene expression in mouse macrophages. Journal of Leukocyte Biology, 2007, 81, 1577-1590.	3.3	41
122	Concordant Epigenetic Silencing of Transforming Growth Factor- \hat{l}^2 Signaling Pathway Genes Occurs Early in Breast Carcinogenesis. Cancer Research, 2007, 67, 11517-11527.	0.9	76
123	Transcriptional Regulatory Networks in Macrophages. Novartis Foundation Symposium, 2007, 281, 2-24.	1.1	23
124	Systems biology of transcription control in macrophages. BioEssays, 2007, 29, 1215-1226.	2.5	44
125	Histone deacetylase inhibitors decrease Tollâ€like receptorâ€mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology, 2007, 122, 596-606.	4.4	155
126	Transcriptional network dynamics in macrophage activation. Genomics, 2006, 88, 133-142.	2.9	125

#	Article	IF	Citations
127	Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genetics, 2006, 38, 626-635.	21.4	1,201
128	Systems biology of innate immunity. Cellular Immunology, 2006, 244, 105-109.	3.0	35
129	Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs. PLoS Genetics, 2006, 2, e62.	3.5	165
130	The JNK Are Important for Development and Survival of Macrophages. Journal of Immunology, 2006, 176, 2219-2228.	0.8	100
131	LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB Journal, 2006, 20, 1315-1327.	0.5	210
132	Antisense Transcription in the Mammalian Transcriptome. Science, 2005, 309, 1564-1566.	12.6	1,553
133	An Inflammatory Role for the Mammalian Carboxypeptidase Inhibitor Latexin: Relationship to Cystatins and the Tumor Suppressor TIG1. Structure, 2005, 13, 309-317.	3.3	71
134	Pilot studies on the parallel production of soluble mouse proteins in a bacterial expression system. Journal of Structural and Functional Genomics, 2005, 6, 13-20.	1.2	7
135	Inflammation suppressor genes: please switch out all the lights. Journal of Leukocyte Biology, 2005, 78, 9-13.	3.3	88
136	Transcription Factor Tfec Contributes to the IL-4-Inducible Expression of a Small Group of Genes in Mouse Macrophages Including the Granulocyte Colony-Stimulating Factor Receptor. Journal of Immunology, 2005, 174, 7111-7122.	0.8	81
137	Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 2005, 16, 11-19.	5. 5	461
138	The Transcriptional Landscape of the Mammalian Genome. Science, 2005, 309, 1559-1563.	12.6	3,227
139	LPS regulates a set of genes in primary murine macrophages by antagonising CSF-1 action. Immunobiology, 2005, 210, 97-107.	1.9	58
140	Interferon-Î ³ : an overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 2004, 75, 163-189.	3.3	3,315
141	Probing the S100 protein family through genomic and functional analysis. Genomics, 2004, 84, 10-22.	2.9	153
142	Genetic control of the innate immune response. BMC Immunology, 2003, 4, 5.	2.2	119
143	Identification and Analysis of Chromodomain-Containing Proteins Encoded in the Mouse Transcriptome. Genome Research, 2003, 13, 1416-1429.	5.5	50
144	Systematic Characterization of the Zinc-Finger-Containing Proteins in the Mouse Transcriptome. Genome Research, 2003, 13, 1430-1442.	5.5	89

#	ARTICLE	IF	CITATIONS
145	Continued Discovery of Transcriptional Units Expressed in Cells of the Mouse Mononuclear Phagocyte Lineage. Genome Research, 2003, 13, 1360-1365.	5.5	41
146	Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse. Genome Research, 2003, 13, 1443-1454.	5.5	43
147	Generation of Diversity in the Innate Immune System: Macrophage Heterogeneity Arises from Gene-Autonomous Transcriptional Probability of Individual Inducible Genes. Journal of Immunology, 2002, 168, 44-50.	0.8	94
148	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420, 563-573.	27.8	1,548
149	The mononuclear phagocyte system revisited. Journal of Leukocyte Biology, 2002, 72, 621-7.	3.3	264
150	Review of In Vitro Toxicity of Nanoparticles and Nanorodsâ€"Part 2., 0, , .		0