Michal Bielejewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7157312/publications.pdf Version: 2024-02-01

MICHAL RIFLEIEWSKI

#	Article	IF	CITATIONS
1	Solvent Effect on 1,2- <i>O</i> -(1-Ethylpropylidene)-α- <scp>d</scp> -glucofuranose Organogel Properties. Langmuir, 2009, 25, 8274-8279.	1.6	72
2	Influence of cellulose gel matrix on BMIMCI ionic liquid dynamics and conductivity. Cellulose, 2017, 24, 1641-1655.	2.4	37
3	Thermal Properties of the Gel Made by Low Molecular Weight Gelator 1,2-O-(1-ethylpropylidene)-α-d-glucofuranose with Toluene and Molecular Dynamics of Solvent. Langmuir, 2008, 24, 534-540.	1.6	30
4	Influence of solvent on the thermal stability and organization of self-assembling fibrillar networks in methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside gels. Tetrahedron, 2011, 67, 7222-7230.	1.0	29
5	Novel supramolecular organogels based on a hydrazide derivative: non-polar solvent-assisted self-assembly, selective gelation properties, nanostructure, solvent dynamics. Soft Matter, 2013, 9, 7501.	1.2	28
6	On the relation between the solvent parameters and the physical properties of methyl-4,6-O-benzylidene-α-d-glucopyranoside organogels. Tetrahedron, 2012, 68, 3803-3810.	1.0	25
7	On electrophoretic NMR. Exploring high conductivity samples. Journal of Magnetic Resonance, 2014, 243, 17-24.	1.2	24
8	Proton conductivity and proton dynamics in nanocrystalline cellulose functionalized with imidazole. Carbohydrate Polymers, 2019, 225, 115196.	5.1	23
9	Evidence of Solventâ^'Gelator Interaction in Sugar-Based Organogel Studied by Field-Cycling NMR Relaxometry. Langmuir, 2010, 26, 17459-17464.	1.6	22
10	Effect of gel matrix confinement on the solvent dynamics in supramolecular gels. Journal of Colloid and Interface Science, 2016, 472, 60-68.	5.0	20
11	The solvent dynamics at pore surfaces in molecular gels studied by field-cycling magnetic resonance relaxometry. Soft Matter, 2014, 10, 7810-7818.	1.2	19
12	The Solvent–Gelator Interaction as the Origin of Different Diffusivity Behavior of Diols in Gels Formed with Sugar-Based Low-Molecular-Mass Gelator. Journal of Physical Chemistry B, 2014, 118, 4005-4015.	1.2	18
13	Thermal Properties, Conductivity, and Spin-lattice Relaxation of Gel Electrolyte Based on Low Molecular Weight Gelator and Solution of High Temperature Ionic Liquid. Electrochimica Acta, 2015, 165, 122-129.	2.6	18
14	1,2-O-(1-Ethylpropylidene)-α-d-glucofuranose, a low molecular mass organogelator: benzene gel formation and their thermal stabilities. Tetrahedron Letters, 2008, 49, 6685-6689.	0.7	15
15	The gelation influence on diffusion and conductivity enhancement effect in renewable ionic gels based on a LMWG. Physical Chemistry Chemical Physics, 2018, 20, 5803-5817.	1.3	15
16	NMR relaxometry study of gelatin based low-calorie soft candies. Molecular Physics, 2019, 117, 1034-1045.	0.8	15
17	Synthesis, thermal properties, conductivity and lifetime of proton conductors based on nanocrystalline cellulose surface-functionalized with triazole and imidazole. International Journal of Hydrogen Energy, 2020, 45, 13365-13375.	3.8	14
18	Interaction of chlorobenzene with gelator in methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside gel probed by proton fast field cycling NMR relaxometry. Tetrahedron, 2011, 67, 8170-8176.	1.0	13

MICHAL BIELEJEWSKI

#	Article	IF	CITATIONS
19	Spin-lattice relaxation study of the methyl proton dynamics in solid 9,10-dimethyltriptycene (DMT). Solid State Nuclear Magnetic Resonance, 2009, 35, 194-200.	1.5	12
20	Ionic Conductivity and Thermal Properties of a Supramolecular Ionogel Made from a Sugar-Based Low Molecular Weight Gelator and a Quaternary Ammonium Salt Electrolyte Solution. Journal of the Electrochemical Society, 2016, 163, G187-G195.	1.3	12
21	The kinetics of thermal processes in imidazole-doped nanocrystalline cellulose solid proton conductor. Cellulose, 2020, 27, 1989-2001.	2.4	12
22	Molecular interactions in high conductive gel electrolytes based on low molecular weight gelator. Journal of Colloid and Interface Science, 2017, 490, 279-286.	5.0	11
23	Dynamics and Proton Transport in Imidazole-Doped Nanocrystalline Cellulose Revealed by High-Resolution Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 18886-18893.	1.5	10
24	Novel approach in determination of ionic conductivity and phase transition temperatures in gel electrolytes based on Low Molecular Weight Gelators. Electrochimica Acta, 2015, 174, 1141-1148.	2.6	9
25	Thermally reversible solidification of novel ionic liquid [im]HSO ₄ by self-nucleated rapid crystallization: investigations of ionic conductivity, thermal properties, and catalytic activity. RSC Advances, 2016, 6, 108896-108907.	1.7	8
26	Synthesis and characterization of triazole based nanocrystalline cellulose solid proton conductors. European Polymer Journal, 2021, 161, 110825.	2.6	8
27	Molecular Dynamics in a New Solid Glucofuranose-Based Low-Molecular-Weight Organogelator as Studied by 1H NMR. Applied Magnetic Resonance, 2008, 33, 431-438.	0.6	7
28	NMR studies of molecular ordering and molecular dynamics in a chiral liquid crystal with the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sm</mml:mi><mml:msup><mml: phase. Physical Review E, 2020, 101, 052708.</mml: </mml:msup></mml:mrow></mml:math 	mrows <m< td=""><td>ıml?msub><m< td=""></m<></td></m<>	ıml?msub> <m< td=""></m<>
29	Effect of self-assembly aggregation on physical properties of non-aqueous ionogels based on LMWG. Journal of Sol-Gel Science and Technology, 2018, 88, 671-683.	1.1	5
30	1H Spin–Lattice Relaxation Study of Dynamical Inequivalence of Methyl Groups in Solid 1,2-O-(1-Ethylpropylidene)-α-d-Glucofuranose. Applied Magnetic Resonance, 2009, 36, 61-68.	0.6	3
31	Freeze-drying of drug nanosuspension– study of formulation and processing factors for the optimization and characterization of redispersible cilostazol nanocrystals. Journal of Drug Delivery Science and Technology, 2022, 74, 103528.	1.4	3
32	Thermal Scanning Conductometry (TSC) as a General Method for Studying and Controlling the Phase Behavior of Conductive Physical Gels. Journal of Visualized Experiments, 2018, , .	0.2	0