Caroline Graff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7156915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain, 2023, 146, 321-336.	3.7	30
2	A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort. Applied Neuropsychology Adult, 2022, 29, 112-119.	0.7	18
3	A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain, 2022, 145, 1805-1817.	3.7	27
4	Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp> : A Longitudinal Multicentre Study. Annals of Neurology, 2022, 91, 33-47.	2.8	21
5	Cognitive composites for genetic frontotemporal dementia: GENFI-Cog. Alzheimer's Research and Therapy, 2022, 14, 10.	3.0	4
6	An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers. Journal of Alzheimer's Disease, 2022, , 1-14.	1.2	3
7	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	1.1	2
8	Dataâ€driven staging of genetic frontotemporal dementia using multiâ€modal <scp>MRI</scp> . Human Brain Mapping, 2022, 43, 1821-1835.	1.9	7
9	Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 1408-1423.	0.4	24
10	Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiology of Aging, 2022, , .	1.5	1
11	The <scp>CBlâ€R</scp> detects early behavioural impairment in genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2022, 9, 644-658.	1.7	1
12	Development of a sensitive trial-ready poly(GP) CSF biomarker assay for <i>C9orf72</i> -associated frontotemporal dementia and amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 761-771.	0.9	12
13	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	9.4	700
14	Longitudinal Cognitive Changes in Genetic Frontotemporal Dementia Within the GENFI Cohort. Neurology, 2022, 99, .	1.5	5
15	Association of Rare <i>APOE</i> Missense Variants V236E and R251G With Risk of Alzheimer Disease. JAMA Neurology, 2022, 79, 652.	4.5	31
16	Amyloid, tau, and astrocyte pathology in autosomal-dominant Alzheimer's disease variants: AβPParc and PSEN1DE9. Molecular Psychiatry, 2021, 26, 5609-5619.	4.1	16
17	Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, 500-514.	0.4	36
18	Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes. Alzheimer's and Dementia, 2021, 17, 969-983.	0.4	31

#	Article	IF	CITATIONS
19	Impairment of episodic memory in genetic frontotemporal dementia: A GENFI study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12185.	1.2	11
20	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	2.8	42
21	Plasma metabolomics of presymptomatic <i>PSEN1</i> â€H163Y mutation carriers: a pilot study. Annals of Clinical and Translational Neurology, 2021, 8, 579-591.	1.7	0
22	MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 608-616.	0.9	10
23	CSF sTREM2 is elevated in a subset in GRN-related frontotemporal dementia. Neurobiology of Aging, 2021, 103, 158.e1-158.e5.	1.5	8
24	Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration. Neurology, 2021, 96, e2296-e2312.	1.5	52
25	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	0.7	10
26	Characterizing the Clinical Features and Atrophy Patterns of <i>MAPT</i> -Related Frontotemporal Dementia With Disease Progression Modeling. Neurology, 2021, 97, e941-e952.	1.5	29
27	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	5.8	140
28	The Revised Self-Monitoring Scale detects early impairment of social cognition in genetic frontotemporal dementia within the GENFI cohort. Alzheimer's Research and Therapy, 2021, 13, 127.	3.0	12
29	Single-cell multimodal analysis in a case with reduced penetrance of Progranulin-Frontotemporal Dementia. Acta Neuropathologica Communications, 2021, 9, 132.	2.4	3
30	Dissemination in time and space in presymptomatic granulin mutation carriers: a GENFI spatial chronnectome study. Neurobiology of Aging, 2021, 108, 155-167.	1.5	3
31	Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage: Clinical, 2021, 30, 102646.	1.4	28
32	Disease-related cortical thinning in presymptomatic granulin mutation carriers. Neurolmage: Clinical, 2021, 29, 102540.	1.4	8
33	<i>SLITRK2</i> , an X-linked modifier of the age at onset in <i>C9orf72</i> frontotemporal lobar degeneration. Brain, 2021, 144, 2798-2811.	3.7	7
34	A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Molecular Neurodegeneration, 2021, 16, 79.	4.4	9
35	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223
36	Pattern of progression in MAPTâ€related frontotemporal dementia: Results from the GENFI study. Alzheimer's and Dementia, 2021, 17, .	0.4	0

#	Article	IF	CITATIONS
37	The APOE ε4 Allele Affects Cognitive Functions Differently in Carriers of APP Mutations Compared to Carriers of PSEN1 Mutations in Autosomal-Dominant Alzheimer's Disease. Genes, 2021, 12, 1954.	1.0	1
38	Detecting clinical progression from abnormal regional brain volumes at baseline in genetic frontotemporal dementia: A GENFI study. Alzheimer's and Dementia, 2021, 17, .	0.4	0
39	A dataâ€driven disease progression model of fluid biomarkers in genetic FTD. Alzheimer's and Dementia, 2021, 17, .	0.4	Ο
40	Atrophy patterns in sporadic and genetic behavioral variant frontotemporal dementia reflect brain network architecture. Alzheimer's and Dementia, 2021, 17, .	0.4	0
41	Differential synaptic marker involvement in the different genetic forms of frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, .	0.4	1
42	A cognitive composite for genetic frontotemporal dementia: GENFI og. Alzheimer's and Dementia, 2021, 17, .	0.4	0
43	From brain volumes to subgroup classification in genetic mutation carriers for frontotemporal dementia: A cluster analysis in the GENFI study. Alzheimer's and Dementia, 2021, 17, .	0.4	0
44	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	4.9	175
45	Amyloid β-Peptide Increases Mitochondria-Endoplasmic Reticulum Contact Altering Mitochondrial Function and Autophagosome Formation in Alzheimer's Disease-Related Models. Cells, 2020, 9, 2552.	1.8	39
46	Early symptoms in symptomatic and preclinical genetic frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 975-984.	0.9	25
47	Abnormal pain perception is associated with thalamo-cortico-striatal atrophy in <i>C9orf72</i> expansion carriers in the GENFI cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1325-1328.	0.9	12
48	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	1.6	4
49	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.5	7
50	Cerebrospinal Fluid YKL-40 and Neurogranin in Familial Alzheimer's Disease: A Pilot Study. Journal of Alzheimer's Disease, 2020, 76, 941-953.	1.2	9
51	Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers. Translational Neurodegeneration, 2020, 9, 27.	3.6	23
52	Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 263-270.	0.9	106
53	Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 612-621.	0.9	55
54	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	2.8	19

#	Article	IF	CITATIONS
55	Cortical microstructural correlates of astrocytosis in autosomal-dominant Alzheimer disease. Neurology, 2020, 94, e2026-e2036.	1.5	42
56	Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex, 2020, 133, 384-398.	1.1	26
57	Longitudinal cognitive decline in autosomal-dominant Alzheimer's disease varies with mutations in APP and PSEN1 genes. Neurobiology of Aging, 2019, 82, 40-47.	1.5	7
58	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	4.9	128
59	PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports, 2019, 13, 669-683.	2.3	132
60	Conformationâ€specific antibodies against multiple amyloid protofibril species from a single amyloid immunogen. Journal of Cellular and Molecular Medicine, 2019, 23, 2103-2114.	1.6	11
61	Transethnic meta-analysis of rare coding variants in PLCG2, ABI3, and TREM2 supports their general contribution to Alzheimer's disease. Translational Psychiatry, 2019, 9, 55.	2.4	32
62	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. NeuroImage, 2019, 189, 645-654.	2.1	33
63	Online information and support for carers of people with youngâ€onset dementia: A multiâ€site randomised controlled pilot study. International Journal of Geriatric Psychiatry, 2019, 34, 1455-1464.	1.3	33
64	Education modulates brain maintenance in presymptomatic frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1124-1130.	0.9	23
65	Confirmation of high frequency of C9orf72 mutations in patients with frontotemporal dementia from Sweden. Neurobiology of Aging, 2019, 84, 241.e21-241.e25.	1.5	8
66	Novel <scp>CSF</scp> biomarkers in genetic frontotemporal dementia identified by proteomics. Annals of Clinical and Translational Neurology, 2019, 6, 698-707.	1.7	42
67	Somatic mutation that affects transcription factor binding upstream of CD55 in the temporal cortex of a late-onset Alzheimer disease patient. Human Molecular Genetics, 2019, 28, 2675-2685.	1.4	12
68	Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain, 2019, 142, 1108-1120.	3.7	41
69	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	3.9	90
70	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
71	Ventricular volume expansion in presymptomatic genetic frontotemporal dementia. Neurology, 2019, 93, e1699-e1706.	1.5	19
72	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. Neurolmage: Clinical, 2019, 24, 102077.	1.4	27

#	Article	IF	CITATIONS
73	Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort. NeuroImage, 2019, 188, 282-290.	2.1	16
74	Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 77, 169-177.	1.5	47
75	Poly(GP), neurofilament and grey matter deficits in <i>C9orf72</i> expansion carriers. Annals of Clinical and Translational Neurology, 2018, 5, 583-597.	1.7	48
76	Findings from the Swedish Study on Familial Alzheimer's Disease Including the APP Swedish Double Mutation. Journal of Alzheimer's Disease, 2018, 64, S491-S496.	1.2	9
77	Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E782-E791.	3.3	105
78	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	4.9	97
79	Comparison of arterial spin labeling registration strategies in the multiâ€center GENetic frontotemporal dementia initiative (GENFI). Journal of Magnetic Resonance Imaging, 2018, 47, 131-140.	1.9	41
80	Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiology of Aging, 2018, 62, 191-196.	1.5	151
81	Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiology of Aging, 2018, 62, 245.e9-245.e12.	1.5	40
82	Common and rare TBK1 variants in early-onset Alzheimer disease in a European cohort. Neurobiology of Aging, 2018, 62, 245.e1-245.e7.	1.5	16
83	O5â€01â€04: EARLY INFLAMMATION AND MICROSTRUCTURAL CORTICAL CHANGES IN FAMILIAL AUTOSOMALâ€DOMINANT ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1639.	0.4	0
84	Phenotypic variability and neuropsychological findings associated with C9orf72 repeat expansions in a Bulgarian dementia cohort. PLoS ONE, 2018, 13, e0208383.	1.1	5
85	The Bri2 and Bri3 BRICHOS Domains Interact Differently with Aβ42 and Alzheimer Amyloid Plaques. Journal of Alzheimer's Disease Reports, 2018, 2, 27-39.	1.2	27
86	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	3.7	39
87	Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nature Communications, 2018, 9, 4273.	5.8	263
88	Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales. Alzheimer's Research and Therapy, 2018, 10, 46.	3.0	34
89	Presymptomatic white matter integrity loss in familial frontotemporal dementia in the <scp>GENFI</scp> cohort: A crossâ€sectional diffusion tensor imaging study. Annals of Clinical and Translational Neurology, 2018, 5, 1025-1036.	1.7	39
90	Distinct Neuroanatomical Correlates of Neuropsychiatric Symptoms in the Three Main Forms of Genetic Frontotemporal Dementia in the GENFI Cohort. Journal of Alzheimer's Disease, 2018, 65, 1-16.	1.2	28

#	Article	IF	CITATIONS
91	Reduced penetrance of the PSEN1 H163Y autosomal dominant Alzheimer mutation: a 22-year follow-up study. Alzheimer's Research and Therapy, 2018, 10, 45.	3.0	11
92	Generation of a human induced pluripotent stem cell line (LLOO8 1.4) from a familial Alzheimer's disease patient carrying a double KM670/671NL (Swedish) mutation in APP gene. Stem Cell Research, 2018, 31, 181-185.	0.3	7
93	Predicting Cognitive Decline across Four Decades in Mutation Carriers and Non-carriers in Autosomal-Dominant Alzheimer's Disease. Journal of the International Neuropsychological Society, 2017, 23, 195-203.	1.2	18
94	The effects of different familial Alzheimer's disease mutations on APP processing in vivo. Alzheimer's Research and Therapy, 2017, 9, 9.	3.0	32
95	The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals. Hippocampus, 2017, 27, 653-667.	0.9	20
96	Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain, 2017, 140, 1784-1791.	3.7	55
97	Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease. Acta Neuropathologica, 2017, 134, 475-487.	3.9	53
98	Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene. Acta Neuropathologica Communications, 2017, 5, 43.	2.4	42
99	White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NeuroImage: Clinical, 2017, 15, 171-180.	1.4	63
100	The Effects of Gene Mutations onÂDefaultÂMode Network inÂFamilialÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2017, 56, 327-334.	1.2	8
101	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	1.1	87
102	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
103	Overall and domainâ€specific life satisfaction when living with familial Alzheimer's disease risk: A quantitative approach. Australian Journal of Cancer Nursing, 2017, 19, 452-458.	0.8	2
104	REST suppression mediates neural conversion of adult human fibroblasts via microRNAâ€dependent and â€independent pathways. EMBO Molecular Medicine, 2017, 9, 1117-1131.	3.3	87
105	No common founder for C9orf72 expansion mutation in Sweden. Journal of Human Genetics, 2017, 62, 321-324.	1.1	4
106	[P1–029]: IN GENETIC FRONTOTEMPORAL DEMENTIA, FUNCTIONAL NETWORK EFFICIENCY IS MAINTAINED UNTIL THE ONSET OF SYMPTOMS: EVIDENCE FOR FUNCTIONAL RESILIENCE TO STRUCTURAL CHANGE. Alzheimer's and Dementia, 2017, 13, P244.	0.4	0
107	[ICâ€03–04]: WHITE MATTER HYPERINTENSITIES IN GENETIC FRONTOTEMPORAL DEMENTIA: A GENFI STUDY. Alzheimer's and Dementia, 2017, 13, P9.	0.4	0
108	[P1–415]: IN GENETIC FRONTOTEMPORAL DEMENTIA, FUNCTIONAL NETWORK EFFICIENCY IS MAINTAINED UNTIL THE ONSET OF SYMPTOMS: EVIDENCE FOR FUNCTIONAL RESILIENCE TO STRUCTURAL CHANGE. Alzheimer's and Dementia, 2017, 13, P436.	0.4	0

#	ARTICLE	IF	CITATIONS
109	[P1–437]: PRESYMPTOMATIC WHITE MATTER INTEGRITY LOSS IN FAMILIAL FRONTOTEMPORAL DEMENTIA IN THE GENETIC FRONTOTEMPORAL DEMENTIA INITIATIVE (GENFI) COHORT: A MULTI ENTRE, CROSS‧ECTIOI DIFFUSION TENSOR IMAGING STUDY. Alzheimer's and Dementia, 2017, 13, P449.	NAD.4	1
110	Mitochondrial dysfunction in a transgenic mouse model expressing human amyloid precursor protein (<scp>APP</scp>) with the Arctic mutation. Journal of Neurochemistry, 2016, 136, 497-502.	2.1	25
111	P1â€025: Cerebral Perfusion as an Imaging Biomarker of Presymptomatic Genetic Frontotemporal Dementia: Preliminary Results from the Genetic Frontotemporal Dementia Initiative (GENFI). Alzheimer's and Dementia, 2016, 12, P409.	0.4	0
112	RHAPSODY – Internet-based support for caregivers of people with young onset dementia: program design and methods of a pilot study. International Psychogeriatrics, 2016, 28, 2091-2099.	0.6	24
113	A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer's disease. Acta Neuropathologica, 2016, 132, 213-224.	3.9	83
114	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	2.8	56
115	Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2016, 3, 623-636.	1.7	207
116	Effect of the Interplay Between Genetic and Behavioral Risks on Survival After Age 75. Journal of the American Geriatrics Society, 2016, 64, 2440-2447.	1.3	2
117	Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease. Brain, 2016, 139, 922-936.	3.7	235
118	Telomerase Gene (hTERT) and Survival: Results From Two Swedish Cohorts of Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 188-195.	1.7	5
119	Ethical aspects of a predictive test for Huntington's Disease. Nursing Ethics, 2016, 23, 565-575.	1.8	10
120	The meaning of living close to a person with Alzheimer disease. Medicine, Health Care and Philosophy, 2016, 19, 341-349.	0.9	14
121	Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurology, The, 2016, 15, 455-532.	4.9	1,242
122	O3-13-06: Targeted re-sequencing of sorl1 in early-onset Alzheimer's dementia: The european early onset dementia consortium. , 2015, 11, P253-P253.		0
123	Rare Variants in <i>PLD3</i> Do Not Affect Risk for Early-Onset Alzheimer Disease in a European Consortium Cohort. Human Mutation, 2015, 36, 1226-1235.	1.1	23
124	Early astrocytosis in autosomal dominant Alzheimer's disease measured in vivo by multi-tracer positron emission tomography. Scientific Reports, 2015, 5, 16404.	1.6	110
125	Microstructural White Matter Properties Mediate the Association between APOE and Perceptual Speed in Very Old Persons without Dementia. PLoS ONE, 2015, 10, e0134766.	1.1	10
126	Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurology, The, 2015, 14, 253-262.	4.9	432

#	Article	IF	CITATIONS
127	Magnified effects of the COMT gene on white-matter microstructure in very old age. Brain Structure and Function, 2015, 220, 2927-2938.	1.2	12
128	Effects of vascular risk factors and <i>APOE</i> Îμ4 on white matter integrity and cognitive decline. Neurology, 2015, 84, 1128-1135.	1.5	105
129	DNMT3A moderates cognitive decline in subjects with mild cognitive impairment: replicated evidence from two mild cognitive impairment cohorts. Epigenomics, 2015, 7, 533-537.	1.0	23
130	Genetic variability in SQSTM1 and risk of early-onset Alzheimer dementia: a European early-onset dementia consortium study. Neurobiology of Aging, 2015, 36, 2005.e15-2005.e22.	1.5	34
131	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.4	173
132	Resolution of inflammation is altered in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 40.	0.4	208
133	HHEX_23 AA Genotype Exacerbates Effect of Diabetes on Dementia and Alzheimer Disease: A Population-Based Longitudinal Study. PLoS Medicine, 2015, 12, e1001853.	3.9	13
134	The benefits of staying active in old age: Physical activity counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory functioning Psychology and Aging, 2014, 29, 440-449.	1.4	52
135	Neuropathological characterization of two siblings carrying the MAPT S305S mutation demonstrates features resembling argyrophilic grain disease. Acta Neuropathologica, 2014, 127, 297-298.	3.9	14
136	Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2014, 2, 17.	2.4	17
137	Amyloid-β Peptide Induces Mitochondrial Dysfunction by Inhibition of Preprotein Maturation. Cell Metabolism, 2014, 20, 662-669.	7.2	176
138	Interactive effects of KIBRA and CLSTN2 polymorphisms on episodic memory in old-age unipolar depression. Neuropsychologia, 2014, 62, 137-142.	0.7	11
139	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	3.9	93
140	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	4.9	302
141	Preclinical Cerebrospinal Fluid and Volumetric Magnetic Resonance Imaging Biomarkers in Swedish Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 1393-1402.	1.2	26
142	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	1.1	155
143	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
144	Partial tetrasomy 14 associated with multiple malformations. American Journal of Medical Genetics, Part A, 2013, 161, 1284-1290.	0.7	4

9

#	Article	IF	CITATIONS
145	A Panâ€ <scp>E</scp> uropean Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	1.1	247
146	Novel progranulin mutations with reduced serum-progranulin levels in frontotemporal lobar degeneration. European Journal of Human Genetics, 2013, 21, 1260-1265.	1.4	9
147	The Association Between APOE ε4 and Alzheimer-type Dementia Among Memory Clinic Patients is Confined to those with a Higher Education. The DESCRIPA Study. Journal of Alzheimer's Disease, 2013, 35, 241-246.	1.2	7
148	Genetic effects on old-age cognitive functioning: A population-based study Psychology and Aging, 2013, 28, 262-274.	1.4	111
149	Ethical aspects of undergoing a predictive genetic testing for Huntington's disease. Nursing Ethics, 2013, 20, 189-199.	1.8	7
150	Modulation of the endoplasmic reticulum–mitochondria interface in Alzheimer's disease and related models. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7916-7921.	3.3	381
151	The Pathogenic AÎ ² 43 Is Enriched in Familial and Sporadic Alzheimer Disease. PLoS ONE, 2013, 8, e55847.	1.1	66
152	The influence of APOE and TOMM40 polymorphisms on hippocampal volume and episodic memory in old age. Frontiers in Human Neuroscience, 2013, 7, 198.	1.0	33
153	Novel TARDBP mutations in Nordic ALS patients. Journal of Human Genetics, 2012, 57, 316-319.	1.1	28
154	Biochemical Studies of Poly-T Variants in the Alzheimer's Disease Associated TOMM40 Gene. Journal of Alzheimer's Disease, 2012, 31, 527-536.	1.2	17
155	Low PiB PET retention in presence of pathologic CSF biomarkers in Arctic <i>APP</i> mutation carriers. Neurology, 2012, 79, 229-236.	1.5	138
156	Amyloid neuropathology in the single Arctic APP transgenic model affects interconnected brain regions. Neurobiology of Aging, 2012, 33, 831.e11-831.e19.	1.5	40
157	Amyloid precursor protein accumulates in aggresomes in response to proteasome inhibitor. Neurochemistry International, 2012, 60, 533-542.	1.9	13
158	Progressive neuropathology and cognitive decline in a single Arctic APP transgenic mouse model. Neurobiology of Aging, 2011, 32, 280-292.	1.5	42
159	Glucose metabolism and PIB binding in carriers of a His163Tyr presenilin 1 mutation. Neurobiology of Aging, 2011, 32, 1388-1399.	1.5	48
160	The Obesity Related Gene, FTO, Interacts with APOE, and is Associated with Alzheimer's Disease Risk: A Prospective Cohort Study. Journal of Alzheimer's Disease, 2011, 23, 461-469.	1.2	163
161	Mutation screening of patients with Alzheimer disease identifies APP locus duplication in a Swedish patient. BMC Research Notes, 2011, 4, 476.	0.6	21
162	Linkage Analysis of Autopsy-Confirmed Familial Alzheimer Disease Supports an Alzheimer Disease Locus in 8q24. Dementia and Geriatric Cognitive Disorders, 2011, 31, 109-118.	0.7	4

#	Article	IF	CITATIONS
163	Association of TMEM106B Gene Polymorphism With Age at Onset in Granulin Mutation Carriers and Plasma Granulin Protein Levels. Archives of Neurology, 2011, 68, 581-6.	4.9	148
164	Altered enzymatic activity and allele frequency of OMI/HTRA2 in Alzheimer's disease. FASEB Journal, 2011, 25, 1345-1352.	0.2	25
165	Linkage to the 8p21.1 Region Including the CLU Gene in Age at Onset Stratified Alzheimer's Disease Families. Journal of Alzheimer's Disease, 2011, 23, 13-20.	1.2	5
166	A functional polymorphism in the HMGCR promoter affects transcriptional activity but not the risk for Alzheimer disease in Swedish populations. Brain Research, 2010, 1344, 185-191.	1.1	14
167	The PSEN1 I143T mutation in a Swedish family with Alzheimer's disease: clinical report and quantification of Al² in different brain regions. European Journal of Human Genetics, 2010, 18, 1202-1208.	1.4	33
168	Linkage to 20p13 including the ANGPT4 gene in families with mixed Alzheimer's disease and vascular dementia. Journal of Human Genetics, 2010, 55, 649-655.	1.1	9
169	A DNA Methylation Study of the Amyloid Precursor Protein Gene in Several Brain Regions from Patients with Familial Alzheimer Disease. Journal of Neurogenetics, 2010, 24, 179-181.	0.6	48
170	Genetic and biochemical studies of SNPs of the mitochondrial Aβ-degrading protease, hPreP. Neuroscience Letters, 2010, 469, 204-208.	1.0	18
171	Genetic association to the amyloid plaque associated protein gene COL25A1 in Alzheimer's disease. Neurobiology of Aging, 2010, 31, 409-415.	1.5	40
172	Aβ43 is more frequent than Aβ40 in amyloid plaque cores from Alzheimer disease brains. Journal of Neurochemistry, 2009, 110, 697-706.	2.1	129
173	APOE-related mortality: Effect of dementia, cardiovascular disease and gender. Neurobiology of Aging, 2009, 30, 1545-1551.	1.5	74
174	Expanded high-resolution genetic study of 109 Swedish families with Alzheimer's disease. European Journal of Human Genetics, 2008, 16, 202-208.	1.4	18
175	Progranulin mutation causes frontotemporal dementia in the Swedish Karolinska family. , 2008, 4, 414-420.		13
176	Positive association between risk for late-onset Alzheimer disease and genetic variation in IDE. Neurobiology of Aging, 2007, 28, 1374-1380.	1.5	43
177	Association study of two genetic variants in mitochondrial transcription factor A (TFAM) in Alzheimer's and Parkinson's disease. Neuroscience Letters, 2007, 420, 257-262.	1.0	41
178	The use of grid computing to drive data-intensive genetic research. European Journal of Human Genetics, 2007, 15, 694-702.	1.4	15
179	A unique gene expression signature discriminates familial Alzheimer's disease mutation carriers from their wild-type siblings. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14854-14859.	3.3	45
180	No association between polymorphisms in the neprilysin promoter region and Swedish Alzheimer's disease patients. Neuroscience Letters, 2003, 337, 111-113.	1.0	24

#	Article	IF	CITATIONS
181	Increased mitochondrial mass in mitochondrial myopathy mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15066-15071.	3.3	262
182	Mitochondrial diseases. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2002, 16, 715-728.	1.4	17
183	Complex genetic counselling and prenatal analysis in a woman with external ophthalmoplegia and deleted mtDNA. , 2000, 20, 426-431.		18
184	Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nature Genetics, 2000, 26, 336-340.	9.4	417
185	Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nature Genetics, 1999, 21, 133-137.	9.4	393
186	Refined genetic localization of the Best disease gene in 11q13 and physical mapping of linked markers on radiation hybrids. Human Genetics, 1997, 101, 263-270.	1.8	14
187	Genetic mapping using fluorescent quantification of allele frequencies in pooled DNA loaded by solid support. Clinical Genetics, 1997, 51, 145-152.	1.0	1
188	Confirmation of linkage to 1q21-31 in a Danish autosomal dominant juvenile-onset glaucoma family and evidence of genetic heterogeneity. Human Genetics, 1995, 96, 285-9.	1.8	35
189	Fine Mapping of Best's Macular Dystrophy Localizes the Gene in Close Proximity to but Distinct from the D11S480/ROM1 Loci. Genomics, 1994, 24, 425-434.	1.3	28
190	No linkage to chromosome 14 in Swedish Alzheimer's disease families. Nature Genetics, 1993, 4, 218-219.	9.4	20
191	The gene for Best's macular dystrophy is located at 11q13 in a Swedish family. Clinical Genetics, 1992, 42. 156-159.	1.0	70