José Manuel RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7156526/publications.pdf Version: 2024-02-01

		331259	552369
30	23,118	21	26
papers	citations	h-index	g-index
32	32	32	45603
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	APPRIS: selecting functionally important isoforms. Nucleic Acids Research, 2022, 50, D54-D59.	6.5	29
2	Unbiased plasma proteomics discovery of biomarkers for improved detection of subclinical atherosclerosis. EBioMedicine, 2022, 76, 103874.	2.7	23
3	Assessing the functional relevance of splice isoforms. NAR Genomics and Bioinformatics, 2021, 3, lqab044.	1.5	13
4	An analysis of tissue-specific alternative splicing at the protein level. PLoS Computational Biology, 2020, 16, e1008287.	1.5	55
5	An analysis of tissue-specific alternative splicing at the protein level. , 2020, 16, e1008287.		0
6	An analysis of tissue-specific alternative splicing at the protein level. , 2020, 16, e1008287.		0
7	An analysis of tissue-specific alternative splicing at the protein level. , 2020, 16, e1008287.		0
8	An analysis of tissue-specific alternative splicing at the protein level. , 2020, 16, e1008287.		0
9	Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development. Marine Biotechnology, 2019, 21, 359-373.	1.1	28
10	The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.	3.8	261
11	SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments. Bioinformatics, 2019, 35, 1594-1596.	1.8	59
12	APPRIS 2017: principal isoforms for multiple gene sets. Nucleic Acids Research, 2018, 46, D213-D217.	6.5	134
13	Loose ends: almost one in five human genes still have unresolved coding status. Nucleic Acids Research, 2018, 46, 7070-7084.	6.5	62
14	PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data. Genome Medicine, 2018, 10, 41.	3.6	63
15	Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy. Cell Reports, 2018, 23, 3685-3697.e4.	2.9	39
16	Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biology, 2016, 17, 251.	3.8	131
17	Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level. PLoS Computational Biology, 2015, 11, e1004325.	1.5	80
18	APPRIS WebServer and WebServices. Nucleic Acids Research, 2015, 43, W455-W459.	6.5	19

José Manuel RodrÃguez

#	Article	IF	CITATIONS
19	Most Highly Expressed Protein-Coding Genes Have a Single Dominant Isoform. Journal of Proteome Research, 2015, 14, 1880-1887.	1.8	106
20	Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Human Molecular Genetics, 2014, 23, 5866-5878.	1.4	463
21	APPRIS: annotation of principal and alternative splice isoforms. Nucleic Acids Research, 2013, 41, D110-D117.	6.5	205
22	De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome. DNA Research, 2013, 20, 93-108.	1.5	84
23	Comparative Proteomics Reveals a Significant Bias Toward Alternative Protein Isoforms with Conserved Structure and Function. Molecular Biology and Evolution, 2012, 29, 2265-2283.	3.5	71
24	An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489, 57-74.	13.7	15,516
25	GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 2012, 22, 1760-1774.	2.4	4,217
26	A User's Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biology, 2011, 9, e1001046.	2.6	1,257
27	firestar —advances in the prediction of functionally important residues. Nucleic Acids Research, 2011, 39, W235-W241.	6.5	52
28	The EMBRACE web service collection. Nucleic Acids Research, 2010, 38, W683-W688.	6.5	40
29	Interoperability with Moby 1.0It's better than sharing your toothbrush!. Briefings in Bioinformatics, 2008, 9, 220-231.	3.2	91
30	CARGO: a web portal to integrate customized biological information. Nucleic Acids Research, 2007, 35, W16-W20.	6.5	16