Jian-Hui Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7156499/publications.pdf

Version: 2024-02-01

201385 233125 3,159 48 27 45 h-index citations g-index papers 49 49 49 5411 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Efficient NO _{<i>x</i>} Abatement over Alkali-Resistant Catalysts via Constructing Durable Dimeric VO _{<i>x</i>} Species. Environmental Science & Environmenta	4.6	35
2	Interfacial Engineering of Twoâ€Dimensional MoN/MoO ₂ Heterostructure Nanosheets as a Bifunctional Electrocatalyst for Overall Water Splitting. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
3	Coâ^'Ni Binaryâ€Metal Oxide Coated with Porous Carbon Derived from Metalâ€Organic Framework as Host of Nanoâ€Sulfur for Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2020, 3, 108-116.	2.4	38
4	Multiple Stimuli-Responsive Conformational Exchanges of Biphen[3]arene Macrocycle. Molecules, 2020, 25, 5780.	1.7	0
5	A cyclic bis[2]catenane metallacage. Nature Communications, 2020, 11, 2727.	5 . 8	21
6	Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal–organic frameworks. Environmental Science: Nano, 2020, 7, 926-937.	2.2	63
7	Phosphine-mediated sequential annulations of allenyl ketone and isocyanide: a bicyclization strategy to access a furan-fused eight-membered ring and a spirocycle. Chemical Communications, 2019, 55, 12180-12183.	2.2	15
8	Synthesis and lithium storage performance of C/NiCo ₂ O ₄ anode derived from MOFs by cation exchange. Ferroelectrics, 2019, 547, 59-67.	0.3	5
9	Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microparticles for solar steam generation. Journal of Materials Chemistry A, 2019, 7, 1244-1251.	5. 2	129
10	Fe and N Co-Doped Porous Carbon Nanospheres with High Density of Active Sites for Efficient CO ₂ Electroreduction. Journal of Physical Chemistry C, 2019, 123, 16651-16659.	1.5	54
11	Efficient Separation of <i>cis</i> ―and <i>trans</i> ―1,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie - International Edition, 2019, 58, 10281-10284.	7.2	115
12	Improved Superconducting Properties of Thick YBa2Cu3O7â ⁻ 'Î Film by Adding Amino-Rich Polyethyleneimine in Precursor Solution. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3503-3508.	0.8	0
13	Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochemical Energy Reviews, 2018, 1, 483-530.	13.1	285
14	N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization. Journal of Materials Chemistry A, 2018, 6, 15245-15252.	5.2	260
15	A Homochiral {Co ^{ΙΙ} ₁₆ Co ^{ΙΙΙ} ₄ } Supertetrahedral <i>T</i> <ebox conten<="" content="" of="" one="" td="" the=""><td>1.7</td><td>17</td></ebox>	1.7	17
16	In situ preparation of Ni nanoparticles in cerium-modified silica aerogels for coking- and sintering-resistant dry reforming of methane. New Journal of Chemistry, 2017, 41, 4869-4878.	1.4	38
17	The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts Toward CO ₂ Electrochemical Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 11368-11379.	1.5	147
18	Highly effective and specific way for the trace analysis of carbaryl insecticides based on Au ₄₂ Rh ₅₈ alloy nanocrystals. Journal of Materials Chemistry A, 2017, 5, 7064-7071.	5.2	19

#	Article	IF	CITATIONS
19	Reducing and Uniforming the Co3 O 4 Particle Size by Sulfonated Graphenal Polymers for Electrochemical Applications. Nanoscale Research Letters, 2017, 12, 165.	3.1	11
20	Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. Journal of Materials Chemistry C, 2017, 5, 573-581.	2.7	51
21	Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2017, 9, 28519-28526.	4.0	83
22	DFT Study of the Mechanisms of Iron-Catalyzed Regioselective Synthesis of α-Aryl Carboxylic Acids from Styrene Derivatives and CO ₂ . Organometallics, 2016, 35, 3932-3938.	1.1	24
23	From anisotropic graphene aerogels to electron- and photo-driven phase change composites. Journal of Materials Chemistry A, 2016, 4, 17042-17049.	5.2	179
24	Nitrogen-doped porous carbon derived from a bimetallic metal–organic framework as highly efficient electrodes for flow-through deionization capacitors. Journal of Materials Chemistry A, 2016, 4, 10858-10868.	5.2	164
25	Preparation of 0.4Li ₂ MnO ₃ ·0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2< with tunable morphologies via polyacrylonitrile as a template and applications in lithiumâ€ion batteries. lournal of Applied Polymer Science, 2016, 133.}	/sub>	7
26	Morphological Evolution of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size. ACS Applied Materials & Description of the Action of Size and Particle Size. ACS Applied Materials & Description of the Action of Size and Particle Size. ACS Applied Materials & Description of Size and Particle Size and Par	4.0	212
27	Electrospinning synthesis of novel lithium-rich $0.4Li2MnO3\hat{A}\cdot0.6LiNi1/3Co1/3Mn1/3O2$ nanotube and its electrochemical performance as cathode of lithium-ion battery. Advances in Manufacturing, 2016, 4, 79-88.	3.2	5
28	Adsorption configuration of sodium 2-quinoxalinecarboxylate on iron substrate: Investigation by in situ SERS, XPS and theoretical calculation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 156, 123-130.	2.0	19
29	In Situ Carbonized Cellulose-Based Hybrid Film as Flexible Paper Anode for Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 1073-1079.	4.0	61
30	TEMPO-mediated oxidized nanocellulose incorporating with its derivatives of carbon dots for luminescent hybrid films. RSC Advances, 2016, 6, 6504-6510.	1.7	30
31	Highly efficient colloid–solution deposition planarization of Hastelloy substrate for IBAD-MgO film. Research on Chemical Intermediates, 2016, 42, 4751-4758.	1.3	8
32	Facile Hydrothermal Synthesis of VS ₂ /Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13044-13052.	4.0	210
33	Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth. Carbohydrate Polymers, 2015, 131, 152-158.	5.1	45
34	Fast fabrication of transparent and multi-luminescent TEMPO-oxidized nanofibrillated cellulose nanopaper functionalized with lanthanide complexes. Journal of Materials Chemistry C, 2015, 3, 2511-2517.	2.7	56
35	Shape-controlled porous heterogeneous PtRu/C/Nafion microspheres enabling high performance direct methanol fuel cells. Journal of Materials Chemistry A, 2015, 3, 15177-15183.	5.2	19
36	Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking. Journal of Materials Chemistry C, 2015, 3, 6717-6724.	2.7	85

#	Article	IF	CITATIONS
37	Integrated Fast Assembly of Free-Standing Lithium Titanate/Carbon Nanotube/Cellulose Nanofiber Hybrid Network Film as Flexible Paper-Electrode for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10695-10701.	4.0	87
38	Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging. RSC Advances, 2015, 5, 31250-31254.	1.7	67
39	Self-Assembly of a Mixed-Valent Co32Ring. European Journal of Inorganic Chemistry, 2014, 2014, 1275-1278.	1.0	12
40	Insight into the covalent grafting of organic films onto carbon steel surfaces for protection. Science Bulletin, 2014, 59, 971-980.	1.7	0
41	Integrated Pt2Ni alloy@Pt core–shell nanoarchitectures with high electrocatalytic activity for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 11400.	5.2	28
42	Graphene anchored with ZrO ₂ nanoparticles as anodes of lithium ion batteries with enhanced electrochemical performance. RSC Advances, 2014, 4, 8472-8480.	1.7	28
43	Optimal microwave-assisted hydrothermal synthesis of nanosized x Li 2 MnO 3 ·(1Ââ^' x)LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials for lithium ion battery. Journal of Power Sources, 2014, 247, 219-227.	4.0	57
44	Multi-photon upconversion luminescence from a CaxYF3+2x host by doping with Yb3+/Er3+ or Yb3+/Tm3+. RSC Advances, 2013, 3, 19909.	1.7	7
45	Anticorrosive Behavior of AMT on Cobalt Electrode: From Electrochemical Methods to Surface-Enhanced Vibrational Spectroscopy Study. Journal of Physical Chemistry C, 2012, 116, 20269-20280.	1.5	11
46	Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 11039.	6.7	117
47	Templateâ€Free Synthesis, Controlled Conversion, and CO Oxidation Properties of CeO ₂ Nanorods, Nanotubes, Nanowires, and Nanocubes. European Journal of Inorganic Chemistry, 2008, 2008, 2429-2436.	1.0	222
48	Chemical treatment of carbon nanotubes as electrodes in electrochemical double-layer capacitors. Journal of Shanghai University, 2005, 9, 557-560.	0.1	0