Timothy A Livengood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7155989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Terrestrial Planet Optical Phase Curves. I. Direct Measurements of the Earth. Astronomical Journal, 2022, 163, 5.	4.7	1
2	Jupiter System Observatory at Sun-Jupiter Lagrangian Point One. , 2021, 53, .		0
3	Ice Giant Atmospheric Science. , 2021, 53, .		2
4	A Next Generation Lunar Orbiter Mission. , 2021, 53, .		0
5	Mission to Characterize Volatiles in Old, Cold, Permanently Shadowed Regions on the Moon. , 2021, 53, .		0
6	Evidence for diurnally varying enrichment of heavy oxygen in Mars atmosphere. Icarus, 2020, 335, 113387.	2.5	4
7	Evaluation of a method to retrieve temperature and wind velocity profiles of the Venusian nightside mesosphere from mid-infrared CO2 absorption line observed by heterodyne spectroscopy. Earth, Planets and Space, 2020, 72, .	2.5	1
8	Earthshine as an illumination source at the Moon. Icarus, 2019, 321, 841-856.	2.5	9
9	Crater age and hydrogen content in lunar regolith from LEND neutron data. Planetary and Space Science, 2018, 162, 105-112.	1.7	2
10	Overview of Primitive Object Volatile Explorer (PrOVE) CubeSat or Smallsat concept. , 2018, , .		0
11	Thermal structure of Venus׳ nightside mesosphere as observed by infrared heterodyne spectroscopy at 10 μm. Planetary and Space Science, 2015, 113-114, 359-368.	1.7	6
12	Thermospheric/mesospheric temperatures on Venus: Results from ground-based high-resolution spectroscopy of CO2 in 1990/1991 and comparison to results from 2009 and between other techniques. Icarus, 2012, 217, 856-862.	2.5	19
13	Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations. Astrobiology, 2011, 11, 393-408.	3.0	161
14	Properties of an Earth-Like Planet Orbiting a Sun-Like Star: Earth Observed by the EPOXI Mission. Astrobiology, 2011, 11, 907-930.	3.0	68
15	A SEARCH FOR ADDITIONAL PLANETS IN FIVE OF THE EXOPLANETARY SYSTEMS STUDIED BY THE NASA <i>EPOXI</i> MISSION. Astrophysical Journal, 2011, 732, 41.	4.5	30
16	SYSTEM PARAMETERS, TRANSIT TIMES, AND SECONDARY ECLIPSE CONSTRAINTS OF THE EXOPLANET SYSTEMS HAT-P-4, TrES-2, TrES-3, and WASP-3 FROM THE NASA <i>EPOXI</i> MISSION OF OPPORTUNITY. Astrophysical Journal, 2011, 726, 94.	4.5	64
17	ROTATIONAL VARIABILITY OF EARTH'S POLAR REGIONS: IMPLICATIONS FOR DETECTING SNOWBALL PLANETS. Astrophysical Journal, 2011, 731, 76.	4.5	50
18	COLORS OF A SECOND EARTH. II. EFFECTS OF CLOUDS ON PHOTOMETRIC CHARACTERIZATION OF EARTH-LIKE EXOPLANETS. Astrophysical Journal, 2011, 738, 184.	4.5	61

TIMOTHY A LIVENGOOD

#	Article	IF	CITATIONS
19	Modification of Jupiter's stratosphere three weeks after the 2009 impact. Icarus, 2011, 213, 195-200.	2.5	2
20	A SEARCH FOR ADDITIONAL PLANETS IN THE NASA <i>EPOXI</i> OBSERVATIONS OF THE EXOPLANET SYSTEM GJ 436. Astrophysical Journal, 2010, 716, 1047-1059.	4.5	56
21	High spectral resolution infrared studies of Titan: Winds, temperature, and composition. Planetary and Space Science, 2010, 58, 1715-1723.	1.7	20
22	Comparison of HIPWAC and Mars Express SPICAM observations of ozone on Mars 2006–2008 and variation from 1993 IRHS observations. Icarus, 2009, 203, 20-27.	2.5	34
23	ALIEN MAPS OF AN OCEAN-BEARING WORLD. Astrophysical Journal, 2009, 700, 915-923.	4.5	188
24	Preliminary Results on HAT-P-4, TrES-3, XO-2, and GJ 436 from the NASA EPOXI Mission. Proceedings of the International Astronomical Union, 2008, 4, 470-473.	0.0	2
25	The NASA <i>EPOXI</i> mission of opportunity to gather ultraprecise photometry of known transiting exoplanets. Proceedings of the International Astronomical Union, 2008, 4, 301-307.	0.0	1
26	Overview of the coordinated ground-based observations of Titan during the Huygens mission. Journal of Geophysical Research, 2006, 111, .	3.3	34
27	Ozone abundance on Mars from infrared heterodyne spectra. Icarus, 2006, 181, 419-431.	2.5	65
28	Ozone abundance on Mars from infrared heterodyne spectra. Icarus, 2006, 183, 396-402.	2.5	22
29	Improved Determination of Ethane (C2H6) Abundance in Titan's Stratosphere. Icarus, 2002, 157, 249-253.	2.5	20
30	Temperature and abundances in the Jovian auroral stratosphere: 1. Ethane as a probe of the millibar region. Journal of Geophysical Research, 1993, 98, 18813-18822.	3.3	46