List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7155770/publications.pdf Version: 2024-02-01

RUBEN K DACDA

#	Article	IF	CITATIONS
1	Intraperitoneal Administration of Forskolin Reverses Motor Symptoms and Loss of Midbrain Dopamine Neurons in PINK1 Knockout Rats. Journal of Parkinson's Disease, 2022, 12, 831-850.	1.5	2
2	Cardiolipin nanodisks confer protection against doxorubicin-induced mitochondrial dysfunction. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183984.	1.4	2
3	Mitochondrial PKA Is Neuroprotective in a Cell Culture Model of Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 3071-3083.	1.9	12
4	Cleaved PINK1 induces neuronal plasticity through PKAâ€mediated BDNF functional regulation. Journal of Neuroscience Research, 2021, 99, 2134-2155.	1.3	11
5	Coenzyme Q nanodisks counteract the effect of statins on C2C12 myotubes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102439.	1.7	4
6	The Community of Bilingual English-Spanish Speakers Exploring Issues in Science and Health: Experiences During the COVID-19 Pandemic. Journal of STEM Outreach, 2021, 4, .	0.3	0
7	Role of Cleaved PINK1 in Neuronal Development, Synaptogenesis, and Plasticity: Implications for Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 769331.	1.4	5
8	Psychological Stress Phenocopies Brain Mitochondrial Dysfunction and Motor Deficits as Observed in a Parkinsonian Rat Model. Molecular Neurobiology, 2020, 57, 1781-1798.	1.9	22
9	Psychological distress and lack of PINK1 promote bioenergetics alterations in peripheral blood mononuclear cells. Scientific Reports, 2020, 10, 9820.	1.6	6
10	Molecular Mechanism by Which Cobra Venom Cardiotoxins Interact with the Outer Mitochondrial Membrane. Toxins, 2020, 12, 425.	1.5	18
11	Assembly and Characterization of Biocompatible Coenzyme Q ₁₀ â€Enriched Lipid Nanoparticles. Lipids, 2020, 55, 141-149.	0.7	9
12	G protein-coupled receptor kinase 2 regulates mitochondrial bioenergetics and impairs myostatin-mediated autophagy in muscle cells. American Journal of Physiology - Cell Physiology, 2019, 317, C674-C686.	2.1	16
13	Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins, 2019, 11, 152.	1.5	31
14	Neuroprotective Mitochondrial Remodeling by AKAP121/PKA Protects HT22 Cell from Glutamate-Induced Oxidative Stress. Molecular Neurobiology, 2019, 56, 5586-5607.	1.9	20
15	A Pilot STEM Curriculum Designed to Teach High School Students Concepts in Biochemical Engineering and Pharmacology. , 2019, 7, 846-877.		1
16	Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. Journal of Nutritional Biochemistry, 2018, 61, 1-16.	1.9	58
17	Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 586-599.	1.4	47
18	Role of Mitochondrial Dysfunction in Degenerative Brain Diseases, an Overview. Brain Sciences, 2018, 8, 178.	1.1	10

#	Article	IF	CITATIONS
19	Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells. Journal of Biological Chemistry, 2017, 292, 4499-4518.	1.6	66
20	<scp>PINK</scp> 1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial <scp>PKA</scp> . Journal of Neurochemistry, 2017, 142, 545-559.	2.1	52
21	Protocols for Assessing Mitophagy in Neuronal Cell Lines and Primary Neurons. Neuromethods, 2017, 123, 249-277.	0.2	10
22	How AMPK and PKA Interplay to Regulate Mitochondrial Function and Survival in Models of Ischemia and Diabetes. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	1.9	52
23	Antioxidants Protect against Arsenic Induced Mitochondrial Cardio-Toxicity. Toxics, 2017, 5, 38.	1.6	48
24	Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson's Disease. International Journal of Molecular Sciences, 2016, 17, 1346.	1.8	15
25	Monomethylarsonous acid, but not inorganic arsenic, is a mitochondria-specific toxicant in vascular smooth muscle cells. Toxicology in Vitro, 2016, 35, 188-201.	1.1	25
26	Glycolysis selectively shapes the presynaptic action potential waveform. Journal of Neurophysiology, 2016, 116, 2523-2540.	0.9	60
27	The possible role of nonbilayer structures in regulating ATP synthase activity in mitochondrial membranes. Biophysics (Russian Federation), 2016, 61, 596-600.	0.2	12
28	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
29	Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins. PLoS ONE, 2015, 10, e0129248.	1.1	42
30	Role of protein kinase A in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Reviews in the Neurosciences, 2015, 26, 359-70.	1.4	77
31	Snake Venom Cytotoxins, Phospholipase A2s, and Zn2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. , 2014, 4, 1000181.		98
32	Molecular models of the Mojave rattlesnake (Crotalus scutulatus scutulatus) venom metalloproteinases reveal a structural basis for differences in hemorrhagic activities. Journal of Biological Physics, 2014, 40, 193-216.	0.7	10
33	Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion. Cardiovascular Research, 2014, 101, 57-68.	1.8	80
34	Beyond the mitochondrion: cytosolic <scp>PINK</scp> 1 remodels dendrites through Protein Kinase A. Journal of Neurochemistry, 2014, 128, 864-877.	2.1	104
35	ERK-mediated phosphorylation of TFAM downregulates mitochondrial transcription: Implications for Parkinson's disease. Mitochondrion, 2014, 17, 132-140.	1.6	54
36	Role of protein phosphatase 2A in modulating autophagy and mitophagy (LB220). FASEB Journal, 2014, 28, LB220.	0.2	0

#	Article	IF	CITATIONS
37	Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature Cell Biology, 2013, 15, 1197-1205.	4.6	792
38	Mitochondrial Dysfunction Accompanied by ERK-Dependent Phosphorylation of TFAM in a Chronic MPP+ Model. Biophysical Journal, 2013, 104, 658a.	0.2	0
39	How Parkinsonian Toxins Dysregulate the Autophagy Machinery. International Journal of Molecular Sciences, 2013, 14, 22163-22189.	1.8	62
40	Genetic Basis for Variation of Metalloproteinase-Associated Biochemical Activity in Venom of the Mojave Rattlesnake (<i>Crotalus scutulatus scutulatus</i>). Biochemistry Research International, 2013, 2013, 1-11.	1.5	18
41	Using crickets to introduce neurophysiology to early undergraduate students. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2013, 12, A66-74.	0.6	17
42	Nitrite Activates Protein Kinase A in Normoxia to Increase Mitochondrial Fusion and Confer Delayed Cytoprotection After Ischemia/Reperfusion. Free Radical Biology and Medicine, 2012, 53, S165.	1.3	0
43	Mechanism of Neuroprotective Mitochondrial Remodeling by PKA/AKAP1. PLoS Biology, 2011, 9, e1000612.	2.6	164
44	Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease. Cell Death and Differentiation, 2011, 18, 1914-1923.	5.0	119
45	Monitoring Mitophagy in Neuronal Cell Cultures. Methods in Molecular Biology, 2011, 793, 325-339.	0.4	49
46	Review: Autophagy and neurodegeneration: survival at a cost?. Neuropathology and Applied Neurobiology, 2010, 36, 125-132.	1.8	69
47	Evaluation of the Consensus of Four Peptide Identification Algorithms for Tandem Mass Spectrometry Based Proteomics. Journal of Proteomics and Bioinformatics, 2010, 03, 039-047.	0.4	34
48	PKA prevents mitochondrial pathology induced by loss of PINK1 function. FASEB Journal, 2010, 24, 345.3.	0.2	0
49	Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission. Journal of Biological Chemistry, 2009, 284, 13843-13855.	1.6	845
50	Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy, 2009, 5, 1213-1214.	4.3	36
51	Mitochondrial quality control: insights on how Parkinson's disease related genes PINK1, parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis. Journal of Bioenergetics and Biomembranes, 2009, 41, 473-479.	1.0	93
52	Mitochondrial kinases in Parkinson's disease: Converging insights from neurotoxin and genetic models. Mitochondrion, 2009, 9, 289-298.	1.6	63
53	Chapter 11 Autophagy in Neurite Injury and Neurodegeneration. Methods in Enzymology, 2009, 453, 217-249.	0.4	103
54	Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress. Autophagy, 2008, 4, 770-782.	4.3	251

#	Article	IF	CITATIONS
55	The Spinocerebellar Ataxia 12 Gene Product and Protein Phosphatase 2A Regulatory Subunit Bβ2 Antagonizes Neuronal Survival by Promoting Mitochondrial Fission. Journal of Biological Chemistry, 2008, 283, 36241-36248.	1.6	77
56	Beclin 1-Independent Pathway of Damage-Induced Mitophagy and Autophagic Stress: Implications for Neurodegeneration and Cell Death. Autophagy, 2007, 3, 663-666.	4.3	151
57	ERK2 translocates to mitochondria during neurodegeneration and is associated with mitochondrial autophagy. Journal of Neuropathology and Experimental Neurology, 2007, 66, 424.	0.9	0
58	ERK2 translocates to mitochondria during neurodegeneration and is associated with mitochondrial autophagy FASEB Journal, 2007, 21, A23.	0.2	0
59	Unfolding-resistant Translocase Targeting. Journal of Biological Chemistry, 2005, 280, 27375-27382.	1.6	33
60	A Developmentally Regulated, Neuron-specific Splice Variant of the Variable Subunit BÎ ² Targets Protein Phosphatase 2A to Mitochondria and Modulates Apoptosis. Journal of Biological Chemistry, 2003, 278, 24976-24985.	1.6	78
61	Protein Phosphatase 2A Holoenzyme Assembly. Journal of Biological Chemistry, 2002, 277, 20750-20755.	1.6	76