Fabio AricÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7155546/publications.pdf

Version: 2024-02-01

74	2,350	236925	²⁴³⁶²⁵
papers	citations	h-index	g-index
85	85	85	2137
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Catechol-based macrocyclic aromatic ether-sulfones: synthesis, characterization and ring-opening polymerization. Arkivoc, 2022, 2021, 13-25.	0.5	O
2	Synthesis of 2,5-furandicarboxylic acid dimethyl ester from galactaric acid <i>via</i> dimethyl carbonate chemistry. Green Chemistry, 2022, 24, 2766-2771.	9.0	18
3	Fully renewable photocrosslinkable polycarbonates from cellulose-derived monomers. Green Chemistry, 2022, 24, 2871-2881.	9.0	11
4	A scale-up procedure to dialkyl carbonates; evaluation of their properties, biodegradability, and toxicity. Sustainable Chemistry and Pharmacy, 2022, 26, 100639.	3.3	4
5	Unravelling the crystal and molecular structure of a 1,3-linked aromatic poly(ether-ketone). Materials Today Chemistry, 2022, 24, 100853.	3.5	O
6	Synthetic approaches to 2,5-bis(hydroxymethyl)furan (BHMF): a stable bio-based diol. Pure and Applied Chemistry, 2021, 93, 551-560.	1.9	9
7	Alkyl carbonate derivatives of furanics: A family of bio-based stable compounds. Sustainable Chemistry and Pharmacy, 2021, 19, 100352.	3.3	12
8	Mustard Carbonate Analogues as Sustainable Reagents for the Aminoalkylation of Phenols. European Journal of Organic Chemistry, 2021, 2021, 3459-3464.	2.4	4
9	Sustainable Hyperbranched Functional Materials via Green Polymerization of Readily Accessible Levoglucosenoneâ€Derived Monomers. Macromolecular Rapid Communications, 2021, 42, e2100284.	3.9	8
10	Alkyl Levulinates from Furfuryl Alcohol Using CT151 Purolite as Heterogenous Catalyst: Optimization, Purification, and Recycling. Sustainable Chemistry, 2021, 2, 493-505.	4.7	4
11	Dimethyl isosorbide <i>via</i> organocatalyst <i>N</i> methyl pyrrolidine: scaling up, purification and concurrent reaction pathways. Catalysis Science and Technology, 2021, 11, 3411-3421.	4.1	17
12	Dimethyl Isosorbide As a Green Solvent for Sustainable Ultrafiltration and Microfiltration Membrane Preparation. ACS Sustainable Chemistry and Engineering, 2020, 8, 659-668.	6.7	90
13	Keggin heteropolyacid as catalyst for olefin epoxidation: A multiphase approach. Sustainable Chemistry and Pharmacy, 2020, 15, 100201.	3.3	5
14	Isosorbide as biobased platform chemical: Recent advances. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 82-88.	5.9	33
15	Editorial: Green Synthesis of Heterocycles. Frontiers in Chemistry, 2020, 8, 74.	3.6	4
16	Purolite-Catalyzed Etherification of 2,5-Bis(hydroxymethyl)furan: A Systematic Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 10221-10226.	6.7	27
17	Dialkyl Carbonates in the Green Synthesis of Heterocycles. Frontiers in Chemistry, 2019, 7, 300.	3.6	19
18	Benzo-Fused 1,4-Heterocycles via Dialkyl Carbonate Chemistry. Synthesis, 2019, 51, 1770-1778.	2.3	1

#	Article	IF	CITATIONS
19	An innovative and sustainable approach to spray paint graffiti removal from Istrian stone through the silica sol-gel chemistry: A preliminary assessment. Journal of Cultural Heritage, 2019, 36, 268-274.	3.3	7
20	Replacement of Toxic Feedstocks in Chemical Synthesis., 2019,, 257-283.		0
21	Replacement of Toxic Feedstocks in Chemical Synthesis. , 2019, , 1-28.		O
22	An Easy Scalable Approach to HMF Employing DMC as Reaction Media: Reaction Optimization and Comparative Environmental Assessment. ChemistrySelect, 2018, 3, 2359-2365.	1.5	23
23	The reactions of dimethyl carbonate and its derivatives. Green Chemistry, 2018, 20, 28-85.	9.0	184
24	5-Membered cyclic ethers via phenonium ion mediated cyclization through carbonate chemistry. Pure and Applied Chemistry, 2018, 90, 93-107.	1.9	3
25	\hat{l}^2 -Aminocarbonates in Regioselective and Ring Expansion Reactions. Journal of Organic Chemistry, 2018, 83, 236-243.	3.2	11
26	Oneâ€Pot Preparation of Dimethyl Isosorbide from <scp>d</scp> â€Sorbitol via Dimethyl Carbonate Chemistry. ChemSusChem, 2017, 10, 53-57.	6.8	28
27	Isosorbide and dimethyl carbonate: a green match. Beilstein Journal of Organic Chemistry, 2016, 12, 2256-2266.	2.2	42
28	Mustard Carbonate Analogues: Influence of the Leaving Group on the Neighboring Effect. ACS Sustainable Chemistry and Engineering, 2016, 4, 2843-2851.	6.7	7
29	Mustard carbonate analogues. Pure and Applied Chemistry, 2016, 88, 3-16.	1.9	9
30	Linear and Cyclic Carbamates via Dialkyl Carbonate Chemistry. , 2016, , 509-529.		0
31	1,3-Oxazinan-2-ones via carbonate chemistry: a facile, high yielding synthetic approach. Pure and Applied Chemistry, 2016, 88, 227-237.	1.9	12
32	Azacrown Ethers from Mustard Carbonate Analogues. ChemPlusChem, 2015, 80, 471-474.	2.8	12
33	Acid Catalyzed Direct-Amidation–Dehydrocyclization of 2-Hydroxy-acetophenones to Benzoxazoles by a One-Pot Sustainable Synthesis. Catalysis Letters, 2015, 145, 939-946.	2.6	9
34	Synthesis of five- and six-membered heterocycles by dimethyl carbonate with catalytic amounts of nitrogen bicyclic bases. Green Chemistry, 2015, 17, 1176-1185.	9.0	40
35	One-pot oximation–Beckmann rearrangement of ketones and aldehydes to amides of industrial interest: Acetanilide, caprolactam and acetaminophen. Catalysis Communications, 2014, 49, 47-51.	3.3	37
36	Behaviour of iprit carbonate analogues in solventless reactions. RSC Advances, 2014, 4, 31071-31078.	3.6	9

#	Article	IF	CITATIONS
37	A Comparative Environmental Assessment for the Synthesis of 1,3-Oxazin-2-one by Metrics: Greenness Evaluation and Blind Spots. ACS Sustainable Chemistry and Engineering, 2014, 2, 1056-1062.	6.7	25
38	Self-catalyzed direct amidation of ketones: A sustainable procedure for acetaminophen synthesis. Catalysis Communications, 2014, 54, 11-16.	3. 3	20
39	The neighbouring effect of isosorbide and its epimers in their reactions with dimethyl carbonate. ScienceOpen Research, 2014, .	0.6	4
40	Chemical Behavior and Reaction Kinetics of Sulfur and Nitrogen Half-Mustard and Iprit Carbonate Analogues. ACS Sustainable Chemistry and Engineering, 2013, 1, 1319-1325.	6.7	19
41	Highly Selective Phosgene-Free Carbamoylation of Aniline by Dimethyl Carbonate under Continuous-Flow Conditions. Organic Process Research and Development, 2013, 17, 679-683.	2.7	39
42	1,3-Oxazinan-2-ones from Amines and 1,3-Diols through Dialkyl Carbonate Chemistry. Synlett, 2012, 23, 1809-1815.	1.8	16
43	Straightforward, metal-free, and stereoselective synthesis of 9-oxo- and 10-hydroxy-2(E)-decenoic acids, important components of honeybee (Apis mellifera) secretions. RSC Advances, 2012, 2, 5229.	3 . 6	7
44	Dimethyl Carbonate as a Sacrificial Molecule for the Synthesis of 5â€Memebered <i>N</i> ―and <i>O</i> â€Heterocycles. Journal of the Chinese Chemical Society, 2012, 59, 1375-1384.	1.4	16
45	5-Membered N-heterocyclic compounds by dimethyl carbonate chemistry. Green Chemistry, 2012, 14, 58-61.	9.0	33
46	Sulfur and Nitrogen Mustard Carbonate Analogues. European Journal of Organic Chemistry, 2012, 2012, 3223-3228.	2.4	27
47	Synthesis of Fiveâ€Membered Cyclic Ethers by Reaction of 1,4â€Diols with Dimethyl Carbonate. ChemSusChem, 2012, 5, 1578-1586.	6.8	57
48	Cyclization reaction of amines with dialkyl carbonates to yield 1,3-oxazinan-2-ones. Pure and Applied Chemistry, 2011, 84, 707-719.	1.9	26
49	Intramolecular cyclisation of isosorbide by dimethylcarbonate chemistry. Comptes Rendus Chimie, 2011, 14, 652-655.	0.5	15
50	Phosgene-free carbamoylation of aniline via dimethyl carbonate. Pure and Applied Chemistry, 2011, 84, 695-705.	1.9	28
51	Green Synthesis of Dimethyl Isosorbide. ChemSusChem, 2010, 3, 566-570.	6.8	104
52	Synthesis of Carbamates from Amines and Dialkyl Carbonates: Influence of Leaving and Entering Groups. Synlett, 2010, 2010, 1567-1571.	1.8	30
53	The stability of imine-containing dynamic [2]rotaxanes to hydrolysis. Organic and Biomolecular Chemistry, 2010, 8, 83-89.	2.8	26
54	Multiphase oxidation of alcohols and sulfides with hydrogen peroxide catalyzed by heteropolyacids. Catalysis Communications, 2010, 11, 1181-1184.	3.3	70

#	Article	lF	Citations
55	Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions. Journal of Chemical Education, 2010, 87, 1233-1235.	2.3	21
56	Dimethyl carbonate as a modern green reagent and solvent. Russian Chemical Reviews, 2010, 79, 479-489.	6.5	152
57	Reaction of dialkyl carbonates with alcohols: Defining a scale of the best leaving and entering groups. Pure and Applied Chemistry, 2009, 81, 1971-1979.	1.9	27
58	Reaction of the Ambident Electrophile Dimethyl Carbonate with the Ambident Nucleophile Phenylhydrazine. Journal of Organic Chemistry, 2008, 73, 1559-1562.	3.2	44
59	Synthesis of dialkyl ethers by decarboxylation of dialkyl carbonates. Green Chemistry, 2008, 10, 1182.	9.0	50
60	Dimethyl Carbonate: Green Solvent and Ambident Reagent. , 2008, , 213-232.		19
61	Insight into the Hardâ^'Soft Acidâ^'Base Properties of Differently Substituted Phenylhydrazines in Reactions with Dimethyl Carbonate. Journal of Physical Chemistry B, 2008, 112, 14525-14529.	2.6	34
62	Multiphase Oxidation of Aniline to Nitrosobenzene with Hydrogen Peroxide Catalyzed by Heteropolyacids. Synlett, 2008, 2008, 967-970.	1.8	20
63	Dynamic Mechanically Interlocked Dendrimers:Â Amplification in Dendritic Dynamic Combinatorial Libraries. Macromolecules, 2007, 40, 3951-3959.	4.8	57
64	Template-Directed Synthesis of Mechanically Interlocked Molecular Bundles Using Dynamic Covalent Chemistry. Organic Letters, 2006, 8, 3899-3902.	4.6	87
65	Pseudorotaxanes and Rotaxanes Formed by Viologen Derivatives. European Journal of Organic Chemistry, 2006, 2006, 1857-1866.	2.4	52
66	Template-Directed Synthesis of Multiply Mechanically Interlocked Molecules Under Thermodynamic Control. Chemistry - A European Journal, 2005, 11, 4655-4666.	3.3	118
67	Template-Directed Dynamic Synthesis of Mechanically Interlocked Dendrimers. Journal of the American Chemical Society, 2005, 127, 5808-5810.	13.7	126
68	Synthesis of a [2]Catenane around a Ru(diimine)32+Scaffold by Ring-Closing Metathesis of Olefins. Organic Letters, 2003, 5, 1887-1890.	4.6	65
69	Microfabrication of high-performance aromatic polymers as nanotubes or fibrils by in situ ring-opening polymerisation of macrocyclic precursors. Journal of Materials Chemistry, 2003, 13, 1504-1506.	6.7	13
70	Non-covalent dimerisation of a bicyclic aromatic oligomer via loop–loop interlocking in the solid state. New Journal of Chemistry, 2002, 26, 1703-1705.	2.8	6
71	One-step syntheses of very large cage-type molecules from aromatic sub-unitsElectronic supplementary data (ESI) available: analytical and spectroscopic data for compounds 3–5 and 8. See http://www.rsc.org/suppdata/cc/b1/b108124c/. Chemical Communications, 2001, , 2574-2575.	4.1	15
72	Templated Synthesis of Interlocked Molecules. Topics in Current Chemistry, 0, , 203-259.	4.0	176

#	Article	IF	CITATIONS
73	The neighbouring effect of isosorbide and its epimers in their reactions with dimethyl carbonate. ScienceOpen Research, 0, , .	0.6	2
74	Microwave-assisted aminoalkylation of phenols via mustard carbonate analogues. Synthesis, 0, , .	2.3	1