Mariafelicia De Laurentis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7155165/publications.pdf

Version: 2024-02-01

103 papers

14,399 citations

43 h-index 95 g-index

105 all docs 105
docs citations

105 times ranked 4613 citing authors

#	Article	IF	CITATIONS
1	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6
2	Orbital precession of the S2 star in Scalar–Tensor–Vector Gravity. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4757-4766.	4.4	35
3	Constraining MOdified Gravity with the S2 Star. Universe, 2022, 8, 137.	2.5	7
4	The Accurate Mass Distribution of M87, the Giant Galaxy with Imaged Shadow of Its Supermassive Black Hole, as a Portal to New Physics. Astrophysical Journal, 2022, 929, 17.	4.5	5
5	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
6	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
7	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
8	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
9	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
10	Orbits in bootstrapped Newtonian gravity. Physical Review D, 2022, 105, .	4.7	5
11	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
12	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	_	
	Selective Dynamical imaging of interferometric data. Astrophysical Journal Letters, 2022, 930, L10.	8.3	21
13	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
13 14	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign.		
	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19. A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion	8.3	43
14	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19. A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic	8.3	20
14 15	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19. A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	43 20 187

#	Article	IF	CITATIONS
19	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
20	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
21	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
22	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
23	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
24	Magnetized discs and photon rings around Yukawa-like black holes. Physical Review D, 2021, 103, .	4.7	15
25	Epicyclic frequencies in static and spherically symmetric wormhole geometries. Physical Review D, 2021, 104, .	4.7	34
26	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65
27	<pre><mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 417<="" 50="" etqq1="" overlock="" pre="" rgbt="" tf="" tj=""></mml:mo)></mml:math></pre>	T d.∜ streto	:h ß ≠"false">)
28	S2 star around the Galactic Center massive black hole. Physical Review D, 2021, 104, . Tracing the cosmic history by Gauss-Bonnet gravity. Physical Review D, 2020, 102, .	4.7	16
29	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
30	General relativistic Poynting-Robertson effect to diagnose wormholes existence: Static and spherically symmetric case. Physical Review D, 2020, 101, .	4.7	45
31	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	4.5	47
32	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
33	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
34	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
35	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
36	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618

#	Article	IF	CITATIONS
37	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
38	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
39	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
40	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
41	The current ability to test theories of gravity with black hole shadows. Nature Astronomy, 2018, 2, 585-590.	10.1	180
42	Observational constraints on Gauss–Bonnet cosmology. International Journal of Modern Physics D, 2018, 27, 1850084.	2.1	46
43	Noether's stars in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi) 0.784314="" 1="" etqq1="" r<="" td="" tj=""><td>gBT/Over 4.1</td><td>lock 10 Tf 50</td></mml:mi)></mml:math>	gBT/Over 4.1	lock 10 Tf 50
44	Radiation from charged particles due to explicit symmetry breaking in a gravitational field. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850122.	2.0	5
45	Modified gravity revealed along geodesic tracks. European Physical Journal C, 2018, 78, 916.	3.9	34
46	Test-particle dynamics in general spherically symmetric black hole spacetimes. Physical Review D, 2018, 97, .	4.7	43
47	Analysis of the Yukawa gravitational potential in $f(R)$ gravity. I. Semiclassical periastron advance. Physical Review D, 2018, 97, .	4.7	44
48	Analysis of the Yukawa gravitational potential in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) (stre<="" 0="" 10="" 297="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>tchy="fals</td><td>e"4}</td></mml:mo)></mml:mi></mml:math>	tc hy ="fals	e" 4}
49	2018, 97, . Gravitational Physics: From Quantum to Waves. , 2018, , 357-488.		O
50	On the universality of MOG weak field approximation at galaxy cluster scale. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 770, 440-444.	4.1	20
51	General relativistic electromagnetic and massive vector field effects with gamma-ray burst production. Physical Review D, 2017, 96, .	4.7	9
52	The cosmological constant as an eigenvalue of the Hamiltonian constraint in a varying speed of light theory. Fortschritte Der Physik, 2017, 65, 1600108.	4.4	2
53	Twisted Soft Photon Hair Implants on Black Holes. Entropy, 2017, 19, 458.	2.2	9
54	An effective field theory description for extended gravity. , 2017, , .		0

#	Article	IF	CITATIONS
55	Verification of f(R)-gravity in binary pulsars. EPJ Web of Conferences, 2016, 125, 03005.	0.3	4
56	Noether symmetries in Gauss–Bonnet-teleparallel cosmology. European Physical Journal C, 2016, 76, 629.	3.9	61
57	Constraining alternative theories of gravity using GW150914 and GW151226. Physical Review D, 2016, 94,	4.7	21
58	Gravitational massive modes from extended gravity. International Journal of Geometric Methods in Modern Physics, 2016, 13, 1650034.	2.0	1
59	<i>f</i> (i>f(i>T) teleparallel gravity and cosmology. Reports on Progress in Physics, 2016, 79, 106901.	20.1	923
60	Metric and connections in theories of gravity. The role of equivalence principle. International Journal of Geometric Methods in Modern Physics, 2016, 13, 1640007.	2.0	1
61	Mass-radius relation for neutron stars in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 492<="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>Td:7stretch</td><td>n<mark>207</mark>false">)</td></mml:mo)></mml:math>	Td:7stretch	n <mark>207</mark> false">)
62	EXTENDED GRAVITY: STATE OF THE ART AND PERSPECTIVES. , 2015, , .		0
63	FROM BLACK HOLE QUANTIZATION TO UNIVERSAL SCALING LAWS., 2015,,.		O
64	Cosmological inflation in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo>,</mml:mo><mml:mi) 0="" etqq0="" overlock<="" rgbt="" td="" tj=""><td>10.7f 50 3</td><td>71⁄87fd (math</td></mml:mi)></mml:math>	1 0.7 f 50 3	71⁄8 7fd (math
65	Review D, 2015, 91, . Noether symmetry approach for teleparallel-curvature cosmology. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550095.	2.0	25
66	Constraining Æ'(R) Gravity by the Large-Scale Structure. Universe, 2015, 1, 123-157.	2.5	61
67	Effective field theory from modified gravity with massive modes. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550004.	2.0	9
68	Interpreting the Dark Side of the Universe as Curvature Effects. Nuclear and Particle Physics Proceedings, 2015, 263-264, 113-118.	0.5	4
69	Invariant solutions and Noether symmetries in hybrid gravity. Physical Review D, 2015, 91, .	4.7	64
70	Probing the physical and mathematical structure of $f(R)$ -gravity by PSR J0348 + 0432. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550040.	2.0	25
71	Noether symmetry approach for Dirac–Born–Infeld cosmology. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550065.	2.0	13
72	Topological invariant quintessence. Modern Physics Letters A, 2015, 30, 1550069.	1.2	18

#	Article	IF	CITATIONS
73	Connecting early and late universe by f(R) gravity. International Journal of Modern Physics D, 2015, 24, 1541002.	2.1	48
74	Probing Gravitational Theories with Eccentric Eclipsing Detached Binary Stars. Acta Polytechnica CTU Proceedings, 2014, 1, 255-258.	0.3	0
75	Noether symmetries in extended gravity quantum cosmology. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1460004.	2.0	48
76	Newtonian, Post-Newtonian and Parametrized Post-Newtonian limits of f(R, ?) gravity. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1450082.	2.0	55
77	Curvature dark energy reconstruction through different cosmographic distance definitions. Annalen Der Physik, 2014, 526, 309-317.	2.4	11
78	The affine structure of gravitational theories: Symplectic groups and geometry. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1450081.	2.0	13
79	Noether symmetry approach in Gauss–Bonnet cosmology. Modern Physics Letters A, 2014, 29, 1450164.	1.2	77
80	Generating the Mass of Particles from Extended Theories of Gravity. Springer Proceedings in Physics, 2014, , 15-28.	0.2	0
81	Testing f(R) -Theories by Binary Pulsars. Acta Polytechnica CTU Proceedings, 2014, 1, 251-254. No further gravitational wave modes in <mml:math< td=""><td>0.3</td><td>0</td></mml:math<>	0.3	0
82	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">)</mml:mo> gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 727,	4.1	111
83	194-198. Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars. Monthly Notices of the Royal Astronomical Society, 2013, 431, 741-748.	4.4	55
84	Weak gravitational lensing by compact objects in fourth order gravity. Physical Review D, 2013, 88, .	4.7	8
85	Cosmographic Constraints and Cosmic Fluids. Galaxies, 2013, 1, 216-260.	3.0	93
86	Running coupling in electroweak interactions of leptons from $f(R)$ -gravity with torsion. European Physical Journal C, 2012, 72, 1.	3.9	18
87	Extended Theories of Gravity. Physics Reports, 2011, 509, 167-321.	25.6	2,457
88	Deriving the mass of particles from Extended Theories of Gravity in LHC era. European Physical Journal C, 2011, 71, 1.	3.9	23
89	MOND'S ACCELERATION SCALE AS A FUNDAMENTAL QUANTITY. Modern Physics Letters A, 2011, 26, 2677-2687.	1.2	19
90	PRIMORDIAL BLACK HOLES, ASTROPHYSICAL SYSTEMS AND THE EDDINGTON–WEINBERG RELATION. Modern Physics Letters A, 2011, 26, 2549-2558.	1.2	6

#	Article	IF	CITATIONS
91	Astrophysical structures from primordial quantum black holes. European Physical Journal C, 2010, 69, 293-303.	3.9	14
92	Massive, massless and ghost modes of gravitational waves from higher-order gravity. Astroparticle Physics, 2010, 34, 236-244.	4.3	97
93	NEUTRINO OSCILLATION PHASE DYNAMICALLY INDUCED BY f(R)-GRAVITY. Modern Physics Letters A, 2010, 25, 1163-1168.	1.2	4
94	Axially symmetric solutions in $\langle i \rangle f \langle i \rangle (\langle i \rangle R \langle i \rangle)$ -gravity. Classical and Quantum Gravity, 2010, 27, 165008.	4.0	104
95	A Bird's Eye View of f (R)-Gravity. The Open Astronomy Journal, 2010, 3, 49-72.	1.6	39
96	A Bird's Eye View of f (R)-Gravity~!2009-09-23~!2009-09-28~!2010-06-03~!. The Open Astronomy Journal, 2010, 3, 49-72.	1.6	24
97	Stochastic Background of Relic Scalar Gravitational Waves tuned by Extended Gravity. Nuclear Physics, Section B, Proceedings Supplements, 2009, 194, 212-217.	0.4	6
98	Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity. Physical Review D, 2009, 79, .	4.7	28
99	Higher-order gravity and the cosmological background of gravitational waves. Astroparticle Physics, 2008, 29, 125-129.	4.3	51
100	GRAVITATIONAL WAVES FROM HYPERBOLIC ENCOUNTERS. Modern Physics Letters A, 2008, 23, 99-107.	1.2	29
101	Tuning the stochastic background of gravitational waves with theory and observations. AIP Conference Proceedings, 2008, , .	0.4	1
102	STOCHASTIC BACKGROUND OF GRAVITATIONAL WAVES "TUNED" BY f(R) GRAVITY. Modern Physics Letters A, 2007, 22, 1097-1104.	1.2	26
103	STOCHASTIC BACKGROUND OF RELIC SCALAR GRAVITATIONAL WAVES FROM SCALAR–TENSOR GRAVITY. Modern Physics Letters A, 2007, 22, 2647-2655.	1.2	29