
## Kristin Bartik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7155015/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Calix[6]arenes with halogen bond donor groups as selective and efficient anion transporters.<br>Chemical Communications, 2022, 58, 6255-6258.                                                                                       | 2.2 | 16        |
| 2  | A Water Molecule Triggers Guest Exchange at a Monoâ€Zinc Centre Confined in a Biomimetic Calixarene<br>Pocket: a Model for Understanding Ligand Stability in Zn Proteins. Chemistry - A European Journal,<br>2021, 27, 13730-13738. | 1.7 | 2         |
| 3  | A Water Molecule Triggers Guest Exchange at a Monoâ€Zinc Centre Confined in a Biomimetic Calixarene<br>Pocket: a Model for Understanding Ligand Stability in Zn Proteins. Chemistry - A European Journal,<br>2021, 27, 13663.       | 1.7 | 1         |
| 4  | Specific Binding of Primary Ammonium lons and Lysine-Containing Peptides in Protic Solvents by Hexahomotrioxacalix[3]arenes. Journal of Organic Chemistry, 2020, 85, 10062-10071.                                                   | 1.7 | 11        |
| 5  | Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs. Angewandte<br>Chemie - International Edition, 2019, 58, 6921-6925.                                                                               | 7.2 | 30        |
| 6  | Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs. Angewandte<br>Chemie, 2019, 131, 6995-6999.                                                                                                      | 1.6 | 5         |
| 7  | Fluorinated Bambusurils as Highly Effective and Selective Transmembrane Clâ^'/HCO3â^' Antiporters.<br>CheM, 2019, 5, 429-444.                                                                                                       | 5.8 | 63        |
| 8  | Efficient Vanadium atalyzed Aerobic Câ^'C Bond Oxidative Cleavage of Vicinal Diols. Advanced<br>Synthesis and Catalysis, 2018, 360, 3286-3296.                                                                                      | 2.1 | 38        |
| 9  | Submerging a Biomimetic Metalloâ€Receptor in Water for Molecular Recognition: Micellar<br>Incorporation or Water Solubilization? A Case Study. Chemistry - A European Journal, 2018, 24,<br>17964-17974.                            | 1.7 | 10        |
| 10 | Astrobiology and the Possibility of Life on Earth and Elsewhere…. Space Science Reviews, 2017, 209,<br>1-42.                                                                                                                        | 3.7 | 66        |
| 11 | Colorimetric and fluorescence "turn-on―recognition of fluoride by a maleonitrile-based uranyl<br>salen-complex. Dyes and Pigments, 2016, 135, 94-101.                                                                               | 2.0 | 20        |
| 12 | A comprehensive study to protein retention in hydrophobic interaction chromatography. Journal of<br>Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 182-188.                             | 1.2 | 27        |
| 13 | A selective calix[6]arene-based fluorescent chemosensor for phosphatidylcholine type lipids. Organic and Biomolecular Chemistry, 2016, 14, 10201-10207.                                                                             | 1.5 | 11        |
| 14 | Rapid and Selective Detection of Proteins by Dual Trapping Using Gold Nanoparticles Functionalized with Peptide Aptamers. ACS Sensors, 2016, 1, 929-933.                                                                            | 4.0 | 50        |
| 15 | Amino acid induced fractal aggregation of gold nanoparticles: Why and how. Journal of Colloid and<br>Interface Science, 2016, 464, 160-166.                                                                                         | 5.0 | 37        |
| 16 | Fluoride binding in water with the use of micellar nanodevices based on salophen complexes. Organic<br>and Biomolecular Chemistry, 2015, 13, 2437-2443.                                                                             | 1.5 | 14        |
| 17 | Primary amine recognition in water by a calix[6]aza-cryptand incorporated in dodecylphosphocholine micelles. Organic and Biomolecular Chemistry, 2015, 13, 2931-2938.                                                               | 1.5 | 15        |
| 18 | Fluorescent Chemosensors for Anions and Contact Ion Pairs with a Cavity-Based Selectivity. Journal of Organic Chemistry, 2014, 79, 6179-6188.                                                                                       | 1.7 | 37        |

KRISTIN BARTIK

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Paramagnetic Relaxation Enhancement Experiments: A Valuable Tool for the Characterization of<br>Micellar Nanodevices. Journal of Physical Chemistry B, 2013, 117, 11654-11659.                                                                       | 1.2 | 9         |
| 20 | Polyoxometalates as a Novel Class of Artificial Proteases: Selective Hydrolysis of Lysozyme under<br>Physiological pH and Temperature Promoted by a Cerium(IV) Kegginâ€Type Polyoxometalate. Chemistry - A<br>European Journal, 2013, 19, 2848-2858. | 1.7 | 134       |
| 21 | UV–Vis and NMR study of the formation of gold nanoparticles by citrate reduction: Observation of gold–citrate aggregates. Journal of Colloid and Interface Science, 2013, 399, 1-5.                                                                  | 5.0 | 75        |
| 22 | DNA-Promoted Auto-Assembly of Gold Nanoparticles: Effect of the DNA Sequence on the Stability of the Assemblies. Polymers, 2013, 5, 1041-1055.                                                                                                       | 2.0 | 5         |
| 23 | Monitoring Fluoride Binding in DMSO: Why is a Singular Binding Behavior Observed?. European<br>Journal of Organic Chemistry, 2012, 2012, 3570-3574.                                                                                                  | 1.2 | 19        |
| 24 | The search for a deterministic origin for the presence of nonracemic aminoâ€acids in meteorites: A computational approach. Chirality, 2011, 23, 367-373.                                                                                             | 1.3 | 8         |
| 25 | Prebiotic chemistry: A fuzzy field. Comptes Rendus Chimie, 2011, 14, 388-391.                                                                                                                                                                        | 0.2 | 15        |
| 26 | ls it Useful to Have a Clear-cut Definition of Life? On the Use of Fuzzy Logic in Prebiotic Chemistry.<br>Origins of Life and Evolution of Biospheres, 2010, 40, 137-143.                                                                            | 0.8 | 28        |
| 27 | Probing polymer colloids by 129Xe NMR. Journal of Colloid and Interface Science, 2009, 330, 344-351.                                                                                                                                                 | 5.0 | 7         |
| 28 | Comparison of the Thermodynamics and Base-Pair Dynamics of a Full LNA:DNA Duplex and of the<br>Isosequential DNA:DNA Duplex. Biochemistry, 2009, 48, 8473-8482.                                                                                      | 1.2 | 22        |
| 29 | Aromatic–Carbohydrate Interactions: An NMR and Computational Study of Model Systems. Chemistry -<br>A European Journal, 2008, 14, 7570-7578.                                                                                                         | 1.7 | 75        |
| 30 | Fluoride Binding in Water: A New Environment for a Known Receptor. ChemPhysChem, 2008, 9, 2168-2171.                                                                                                                                                 | 1.0 | 29        |
| 31 | Developments in the Characterisation of the Catalytic Triad of α-Chymotrypsin: Effect of the Protonation State of Asp102 on the1H NMR Signals of His57. ChemBioChem, 2007, 8, 51-54.                                                                 | 1.3 | 6         |
| 32 | Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the<br>α-chymotrypsin–proflavin interaction. European Biophysics Journal, 2007, 37, 11-18.                                                               | 1.2 | 8         |
| 33 | Novel Method for the Measurement of Xenon Gas Solubility Using129Xe NMR Spectroscopy. Journal of Physical Chemistry A, 2006, 110, 10770-10776.                                                                                                       | 1.1 | 18        |
| 34 | Structural characterization of the papaya cysteine proteinases at low pH. Biochemical and Biophysical Research Communications, 2006, 341, 620-626.                                                                                                   | 1.0 | 50        |
| 35 | Xenon NMR as a Probe for Microporous and Mesoporous Solids, Polymers, Liquid Crystals, Solutions,<br>Flames, Proteins, Imaging. ChemInform, 2006, 37, no.                                                                                            | 0.1 | 2         |
| 36 | Do Serine Octamers Exist in Solution? Relevance of this Question in the Context of the Origin of<br>Homochirality on Earth. European Journal of Organic Chemistry, 2006, 2006, 3069-3073.                                                            | 1.2 | 21        |

KRISTIN BARTIK

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Potential of the Xenon "Spin-Spy―Methodology for the Study of Configurational Equilibria in<br>Solution. ChemPhysChem, 2003, 4, 305-308.                                                        | 1.0 | 9         |
| 38 | Comparison of the NMR enantiodifferentiation of a chiral ruthenium(ii) complex of C2 symmetry using the TRISPHAT anion and a lanthanide shift reagent. New Journal of Chemistry, 2003, 27, 748-751. | 1.4 | 20        |
| 39 | The Potential of 129Xe NMR Relaxation Measurements for the Study of Heme Proteins. ChemPhysChem, 2002, 3, 812-814.                                                                                  | 1.0 | 10        |
| 40 | NMR study of the reversible complexation of xenon by cucurbituril. Perkin Transactions II RSC, 2001, , 804-807.                                                                                     | 1.1 | 78        |
| 41 | NMR Investigation of the complexation of neutral guests by cucurbituril. Perkin Transactions II RSC, 2001, , 2104-2107.                                                                             | 1.1 | 63        |
| 42 | Probing Proteins in Solution by 129Xe NMR Spectroscopy. Journal of Magnetic Resonance, 2001, 150, 167-174.                                                                                          | 1.2 | 54        |
| 43 | Molecular polarization and molecular chiralization: The first example of a chiralized xenon atom.<br>Chirality, 2001, 13, 2-6.                                                                      | 1.3 | 13        |
| 44 | Can Monoatomic Xenon Become Chiral?. ChemPhysChem, 2000, 1, 221-224.                                                                                                                                | 1.0 | 17        |
| 45 | Study by 23Na-NMR, 1H-NMR, and Ultraviolet Spectroscopy of the Thermal Stability of an 11-Basepair<br>Oligonucleotide. Biophysical Journal, 2000, 78, 1059-1069.                                    | 0.2 | 13        |
| 46 | 129Xe and1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution.<br>Journal of the American Chemical Society, 1998, 120, 784-791.                                    | 6.6 | 187       |
| 47 | Pulsed Sonochemistry. Journal of Physical Chemistry A, 1998, 102, 9177-9182.                                                                                                                        | 1.1 | 17        |
| 48 | Group Contribution Analysis of Xenon NMR Solvent Shifts. Journal of Physical Chemistry A, 1997, 101, 5278-5283.                                                                                     | 1.1 | 26        |
| 49 | Probing Molecular Cavities in α-Cyclodextrin Solutions by Xenon NMR. Journal of Magnetic Resonance<br>Series B, 1995, 109, 164-168.                                                                 | 1.6 | 59        |
| 50 | A method for the estimation of ?1 torsion angles in proteins. Journal of Biomolecular NMR, 1993, 3, 415.                                                                                            | 1.6 | 9         |
| 51 | 1H-NMR analysis of turkey egg-white lysozyme and comparison with hen egg-white lysozyme. FEBS<br>Journal, 1993, 215, 255-266.                                                                       | 0.2 | 17        |
| 52 | Topsentins, new toxic bis-indole alkaloids from the marine sponge Topsentiagenitrix. Canadian Journal of Chemistry, 1987, 65, 2118-2121.                                                            | 0.6 | 109       |
| 53 | Liquid water: a necessary condition for all forms of life?. , 0, , 205-217.                                                                                                                         |     | 2         |