
Michelle Muzzio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7154791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 2019, 3, 124-135.	24.0	326
2	Cu ₃ N Nanocubes for Selective Electrochemical Reduction of CO ₂ to Ethylene. Nano Letters, 2019, 19, 8658-8663.	9.1	173
3	CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds. Chemistry of Materials, 2017, 29, 1413-1418.	6.7	149
4	Pd Nanoparticles Coupled to WO _{2.72} Nanorods for Enhanced Electrochemical Oxidation of Formic Acid. Nano Letters, 2017, 17, 2727-2731.	9.1	136
5	Stabilizing CuPd Nanoparticles via CuPd Coupling to WO _{2.72} Nanorods in Electrochemical Oxidation of Formic Acid. Journal of the American Chemical Society, 2017, 139, 15191-15196.	13.7	106
6	Strain Effect in Palladium Nanostructures as Nanozymes. Nano Letters, 2020, 20, 272-277.	9.1	85
7	Anisotropic Strain Tuning of L1 ₀ Ternary Nanoparticles for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 19209-19216.	13.7	76
8	Room-Temperature Chemoselective Reduction of 3-Nitrostyrene to 3-Vinylaniline by Ammonia Borane over Cu Nanoparticles. Journal of the American Chemical Society, 2018, 140, 16460-16463.	13.7	73
9	AgPd Nanoparticles Deposited on WO _{2.72} Nanorods as an Efficient Catalyst for One-Pot Conversion of Nitrophenol/Nitroacetophenone into Benzoxazole/Quinazoline. Journal of the American Chemical Society, 2017, 139, 5712-5715.	13.7	71
10	A New Hexagonal Cobalt Nanosheet Catalyst for Selective CO ₂ Conversion to Ethanal. Journal of the American Chemical Society, 2021, 143, 15335-15343.	13.7	64
11	Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale, 2019, 11, 18946-18967.	5.6	61
12	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Doped Graphene. Angewandte Chemie - International Edition, 2018, 57, 451-455.	13.8	47
13	PdAu Alloy Nanoparticles for Ethanol Oxidation in Alkaline Conditions: Enhanced Activity and C1 Pathway Selectivity. ACS Applied Energy Materials, 2019, 2, 8701-8706.	5.1	45
14	Efficient Hydrogen Generation from Ammonia Borane and Tandem Hydrogenation or Hydrodehalogenation over AuPd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 2814-2821.	6.7	45
15	Reductive amination of ethyl levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen pressure. Green Chemistry, 2019, 21, 1895-1899.	9.0	44
16	Water Permeability across Symmetric and Asymmetric Droplet Interface Bilayers: Interaction of Cholesterol Sulfate with DPhPC. Langmuir, 2015, 31, 12187-12196.	3.5	39
17	One-pot formic acid dehydrogenation and synthesis of benzene-fused heterocycles over reusable AgPd/WO _{2.72} nanocatalyst. Journal of Materials Chemistry A, 2018, 6, 23766-23772.	10.3	29
18	Effect of Monoglyceride Structure and Cholesterol Content on Water Permeability of the Droplet Bilayer. Langmuir, 2013, 29, 15919-15925.	3.5	27

MICHELLE MUZZIO

#	Article	IF	CITATIONS
19	Selfâ€Assembly of Nanoparticles into Twoâ€Dimensional Arrays for Catalytic Applications. ChemPhysChem, 2019, 20, 23-30.	2.1	20
20	Nanoparticle-Catalyzed Green Chemistry Synthesis of Polybenzoxazole. Journal of the American Chemical Society, 2021, 143, 2115-2122.	13.7	20
21	CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angewandte Chemie - International Edition, 2020, 59, 15933-15936.	13.8	19
22	Highly Efficient AuPd Catalyst for Synthesizing Polybenzoxazole with Controlled Polymerization. Matter, 2019, 1, 1631-1643.	10.0	8
23	It Is Time to Think about Scale. Joule, 2020, 4, 1366-1368.	24.0	4
24	Adaptability of Monoglyceride-Induced Crystallization of K ₂ SO ₄ : Effect of Various Anions and Lipid Chain Splay. Langmuir, 2015, 31, 2112-2119.	3.5	3
25	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Doped Graphene. Angewandte Chemie, 2018, 130, 460-464.	2.0	2
26	CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angewandte Chemie, 2020, 132, 16067-16070.	2.0	2
27	The best of both worlds in material synthesis to understand metal-support interactions. Matter, 2021, 4, 3382-3384.	10.0	1
28	Project Symphony: A Biophysics Research Experience at a Primarily Undergraduate Institution. The Biophysicist, 2021, 2, 1-5.	0.3	1
29	Electrolysis in Flux. Joule, 2020, 4, 2541-2543.	24.0	Ο
30	Go with the fluorescent flow. Joule, 2021, 5, 1035-1037.	24.0	0