
Ni Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7153845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy and Environmental Science, 2017, 10, 941-949.	30.8	253
2	Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Applied Surface Science, 2019, 463, 931-938.	6.1	137
3	CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chemical Engineering Journal, 2017, 307, 105-112.	12.7	135
4	Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 280, 119451.	20.2	133
5	Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chemical Engineering Journal, 2018, 345, 31-38.	12.7	126
6	Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2020, 380, 122488.	12.7	100
7	Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction. Applied Catalysis B: Environmental, 2018, 233, 226-233.	20.2	95
8	Self‣upportive Mesoporous Ni/Co/Fe Phosphosulfide Nanorods Derived from Novel Hydrothermal Electrodeposition as a Highly Efficient Electrocatalyst for Overall Water Splitting. Small, 2019, 15, e1905201.	10.0	80
9	Partly nitrogenized nickel oxide hollow spheres with multiple compositions for remarkable electrochemical performance. Chemical Engineering Journal, 2019, 358, 531-539.	12.7	72
10	Self-generated N-doped anodized stainless steel mesh for an efficient and stable overall water splitting electrocatalyst. Applied Surface Science, 2019, 480, 655-664.	6.1	55
11	Incomplete phase separation strategy to synthesize P/N co-doped porous carbon with interconnected structure for asymmetric supercapacitors with ultra-high power density. Electrochimica Acta, 2019, 298, 717-725.	5.2	52
12	Monodisperse nickel/cobalt oxide composite hollow spheres with mesoporous shell for hybrid supercapacitor: A facile fabrication and excellent electrochemical performance. Composites Part B: Engineering, 2017, 113, 144-151.	12.0	49
13	Remarkable electrochemical properties of novel LaNi _{0.5} Co _{0.5} Co _{0.5} O ₃ /0.333Co ₃ O ₄ hollow spheres with a mesoporous shell. Journal of Materials Chemistry A, 2017, 5, 5838-5845.	10.3	48
14	Self-Assembled Ni ₃ S ₂ Nanosheets with Mesoporous Structure Tightly Held on Ni Foam as a Highly Efficient and Long-Term Electrocatalyst for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 5430-5439.	6.7	48
15	Sol–gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceramics International, 2016, 42, 11411-11416.	4.8	45
16	Quaternary (Fe/Ni)(P/S) mesoporous nanorods templated on stainless steel mesh lead to stable oxygen evolution reaction for over two months. Journal of Colloid and Interface Science, 2020, 561, 576-584.	9.4	42
17	In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage. Journal of Porous Materials, 2019, 26, 921-929.	2.6	41
18	Mesoporous LaNiO3/NiO nanostructured thin films for high-performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9730.	10.3	40

NI WANG

#	Article	IF	CITATIONS
19	"Structural instability―induced high-performance NiFe layered double hydroxides as oxygen evolution reaction catalysts for pH-near-neutral borate electrolyte: The role of intercalates. Applied Catalysis B: Environmental, 2020, 263, 118343.	20.2	39
20	An <i>in situ</i> anion exchange induced high-performance oxygen evolution reaction catalyst for the pH-near-neutral potassium borate electrolyte. Journal of Materials Chemistry A, 2019, 7, 6995-7005.	10.3	38
21	N-Doped Porous Carbon Self-Generated on Nickel Oxide Nanosheets for Electrocatalytic N ₂ Fixation with a Faradaic Efficiency beyond 30%. ACS Sustainable Chemistry and Engineering, 2019, 7, 18874-18883.	6.7	37
22	Cu(I)/Cu(II) partially substituting the Co(II) of spinel Co3O4 nanowires with 3D interconnected architecture on carbon cloth for high-performance flexible solid-state supercapacitors. Chemical Engineering Journal, 2020, 391, 123536.	12.7	37
23	Self-Supported Composite of (Ni,Co) ₃ C Mesoporous Nanosheets/N-Doped Carbon as a Flexible Electrocatalyst for pH-Universal Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 5287-5295.	6.7	36
24	Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceramics International, 2019, 45, 10420-10428.	4.8	33
25	Significantly improved conductivity of spinel Co ₃ O ₄ porous nanowires partially substituted by Sn in tetrahedral sites for high-performance quasi-solid-state supercapacitors. Journal of Materials Chemistry A, 2021, 9, 7005-7017.	10.3	31
26	In situ hydrothermal preparation of mesoporous Fe 3 O 4 film for high-performance negative electrodes of supercapacitors. Microporous and Mesoporous Materials, 2018, 265, 189-194.	4.4	26
27	Azide-assisted hydrothermal synthesis of N-doped mesoporous carbon cloth for high-performance symmetric supercapacitor employing LiClO 4 as electrolyte. Composites Part A: Applied Science and Manufacturing, 2017, 98, 58-65.	7.6	21
28	Highly mesoporous LaNiO 3 /NiO composite with high specific surface area as a battery-type electrode. Ceramics International, 2017, 43, 5687-5692.	4.8	18
29	Electrochemical behavior of representative electrode materials in artificial seawater for fabricating supercapacitors. Electrochimica Acta, 2019, 318, 211-219.	5.2	18
30	N-doped mesoporous carbon derived from electrodeposited polypyrrole on porous carbon cloth for high-performance flexibility supercapacitors. Journal of Electroanalytical Chemistry, 2019, 839, 39-47.	3.8	18
31	Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area for supercapacitor electrode materials. Journal of Solid State Electrochemistry, 2016, 20, 1429-1434.	2.5	17
32	Porous Ag-doped MnO2 thin films for supercapacitor electrodes. Journal of Porous Materials, 2017, 24, 1717-1723.	2.6	15
33	One-step carbonization of poly(styrene/divinylbenzene) to fabricate N-doped porous carbon for high-performance supercapacitor electrode. Journal of Porous Materials, 2020, 27, 627-635.	2.6	15
34	Mesoporous three dimension NiCo2O4/graphene composites fabricated by self-generated sacrificial template method for a greatly enhanced specific capacity. Journal of Materials Science: Materials in Electronics, 2017, 28, 11119-11124.	2.2	14
35	N-doped mesoporous carbon integrated on carbon cloth for flexible supercapacitors with remarkable performance. Journal of Materials Science, 2018, 53, 14573-14585.	3.7	14
36	In situ removal of template to synthesize mesoporous NiCo 2 O 4 for high performance battery–type electrode. Journal of Electroanalytical Chemistry, 2016, 782, 133-137.	3.8	10

NI WANG

#	Article	IF	CITATIONS
37	Waste stainless steel mesh anodized under hydrothermal environment for flexible negative electrode of supercapacitor. Journal of Porous Materials, 2019, 26, 1489-1494.	2.6	8
38	Large-scale rapid synthesis of C@MnO2 nano particles by using an ultrasound strategy for supercapacitor electrode. Journal of Porous Materials, 0, , 1.	2.6	4
39	S and Co co-doped Cu3P nanowires self-supported on Cu foam as an efficient hydrogen evolution electrocatalyst in artificial seawater. Journal of Porous Materials, 2021, 28, 763-771.	2.6	3
40	Triple functions of polyaniline in situ coated on silver powders for high-performance electrically conductive pastes. Materials Express, 2021, 11, 1231-1238.	0.5	2
41	Electrochemical double-pulse technique to modulate the roughened surface of copper foil for copper-clad laminates. Transactions of the Institute of Metal Finishing, 2022, 100, 276-282.	1.3	2
42	Iron electroplating under hydrothermal conditions to improve anticorrosion performance. Transactions of the Institute of Metal Finishing, 2018, 96, 179-184.	1.3	0
43	Hydrothermal treatment of submicrometer copper powders for the improved anti-oxidative capacity. Materials Research Innovations, 2021, 25, 133-137.	2.3	0
44	In situ fabrication of mesoporous NiO@ Graphite paper electrode with multilayered nanosheet wall structures for high-performance supercapacitors. IOP Conference Series: Earth and Environmental Science, 0, 639, 012003.	0.3	0
45	Synthesis of Novel NiFe2O4/Fe3O4 Nanotube arrays as flexible negative electrodes for Supercapacitor Applications. IOP Conference Series: Earth and Environmental Science, 0, 639, 012029.	0.3	0
46	Electrochemical Characterization of Mesoporous NiCo2O4 Nanocomposites Synthetized by a Xerogel Route. , 2016, , .		0